Central European Journal of Biology

, Volume 9, Issue 5, pp 569–578 | Cite as

Seed germination at different temperatures and seedling emergence at different depths of Rhamnus spp

  • Hanan El Aou-ouad
  • Hipólito Medrano
  • Ahmed Lamarti
  • Javier Gulías
Research Article


Rhamnus alaternus and R. ludovici-salvatoris, two Mediterranean shrubs with different geographic distributions, have shown important differences in seedling recruitment capacity. The objectives of this work were to determine the ability of these species to germinate seeds under different temperature ranges, as well as the capacity of seedlings to emerge from different burial depths, in order to better understand their regeneration processes. Two different experiments were performed. In the first one, seed germination was studied in Petri dishes and in the dark at different temperature regimes: a) 5–15°C, b) 10–20°C and c) 15–25°C (12h/12h). In the second experiment, seedling emergence capacity from different burial depths (0.5, 2 and 5 cm) was tested. R. ludovici-salvatoris showed a significantly higher final germination rates, a lower dormancy period, and average time response at 10–20°C than at other temperature ranges, although differences were much greater when seeds were subjected to the 5–15°C temperature regime. By contrast, R. alaternus did not show significant differences between treatments (5–15°C and 10–20°C) in germination behavior. Seedling emergence of both species was lower and slower when seeds were buried at 5 cm. However, R. ludovici-salvatoris always showed a lower seedling emergence capacity than R. alaternus at any burial depth. The low ability of R. ludovici-salvatoris to germinate seeds and emerge between 5–15°C, even from shallow depths, is discussed in relation to its low regeneration capacity and declining geographic distribution.


Burial Germination temperature Mediterranean shrubs Regeneration capacity Rhamnaceae Threatened species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fenner M., Kitajima K., Seed and seedling ecology, In: Pugnaire F.I., Valladares F. (Eds), Handbook of functional ecology, Marcel Dekker, New York, 1999, 589–621Google Scholar
  2. [2]
    Rey P.J., Alcántara J.M., Recruitment dynamics of a fleshy-fruited plant (Olea europaea): connecting patterns of seed dispersal to seedling establishment, J. Ecol., 2000, 88, 622–633CrossRefGoogle Scholar
  3. [3]
    Traveset A., Gulías J., Riera N., Mus N., Transition probabilities from pollination to establishment in a rare dioecious shrub species (Rhamnus ludovicisalvatoris) in two habitats, J. Ecol., 2003, 91, 427–437CrossRefGoogle Scholar
  4. [4]
    García-Fayos P., Gulías J., Martínez, J., Marzo A., Melero J.P., Traveset A., et al., Ecological bases for the collection, storage and germination of seeds of species of forest use in the Valencian Community [Bases ecológicas para la recolección, almacenamiento y germinación de semillas de especies de uso forestal de la Comunidad Valenciana], Banc of Llavors and Forestry, Ministry of the Environment-Generalitat Valenciana [Banc de Llavors Forestals-Conselleria de Medi Ambient-Generalitat Valenciana], Valencia, 2001 [in Spanish]Google Scholar
  5. [5]
    Gulías J., Traveset A., Riera N., Mus M., Critical stages in the recruitment process of Rhamnus alaternus L, Ann. Bot., 2004, 93, 723–731PubMedCrossRefGoogle Scholar
  6. [6]
    Gómez J.M., Importance of microhabitat and acorn burial on Quercus ilex early recruitment: non-additive effects on multiple demographic processes, Plant Ecol., 2004, 172, 287–297CrossRefGoogle Scholar
  7. [7]
    Harper, J.L., Population Biology of Plants, Academic Press, New York. 252 R, 1977Google Scholar
  8. [8]
    Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., et al., Flora Europaea Volume 2, Rosaceae to Umbelliferae. Cambridge University Press, Cambridge, 1968Google Scholar
  9. [9]
    Alomar G., Mus M., Rosselló J.A., Flora endemic to the Balearic Island [Flora endèmica de les Balears], Consell Insular de Mallorca, Palma de Mallorca, 1997 [in Spanish]Google Scholar
  10. [10]
    Gulías J., Flexas J., Abadía A., Medrano H., Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species, Tree Physiol., 2002, 22, 687–697PubMedCrossRefGoogle Scholar
  11. [11]
    Borchert M.I., Davis F.W., Michaelsen J., Oyler L.D., Interactions of factors affecting seedling recruitment of blue oak (Quercus douglasii) in California, Ecology., 1989, 70, 389–404CrossRefGoogle Scholar
  12. [12]
    Nahal I., The Mediterranean climate from a biological point of view In: di Castri F., Goodall D.W., Specht R.L. (Eds.), Mediterranean-type shrublands, Ecosystems of the World, Vol. 11. Elsevier, Amsterdam, 1981, 63–86Google Scholar
  13. [13]
    Rodó X., Comín F., Mediterranean climate fluctuations: global connections and regional consequences [Fluctuaciones del clima mediterráneo: conexiones globales y consecuencias regionales], In: Zamora R., Pugnaire F.I. (Eds.), Ecosistemas Mediterráneos: Análisis funcional. Colección de textos universitarios no32 (CSIC), Granada, 2001, 1–35Google Scholar
  14. [14]
    Verdú M., García-Fayos P., Nucleation processes in a Mediterranean bird-dispersed plant, Funct. Ecol., 1996, 10, 275–280CrossRefGoogle Scholar
  15. [15]
    Guo Ke., Rui Li., Werger M.J.A., Effect of acron burying depth on germination, seedling emergence and development of Quercus aliena var.acuteserrata, Acta Botanica Sinica., 2001, 43: 974–978Google Scholar
  16. [16]
    Guo C., Lu J., Yang D., Zhao L., Impact of burial and insect infection on germination and seedling growth of acorns of Quercus variabilis, Forest Ecol. and Managem., 2009, 258, 1497–1502CrossRefGoogle Scholar
  17. [17]
    Bas J.M., Frugivoria, dispersal and seed predation on buckthorn (Rhamnus alaternus L.): role of birds, rodents and ants [Frugivoria, dispersió i depredació de llavors en l’aladern (Rhamnus alaternus L.): paper dels ocells, rosegadors i formigues], PhD Thesis, Faculty of Sciences, University of Girona, Girona, 2001Google Scholar
  18. [18]
    Rita J. Carulla J., Trees and shrubs of the Islands. Forests and thickets [Arbres i arbusts de les Balears. Boscos i garrigues], Ed FerranSintes, Palma, 1996 [in Spanish]Google Scholar
  19. [19]
    Aronne G., Wilcock C.C., First evidence of myrmecochory in fleshy-fruited shrubs of the Mediterranean region, New Phytol, 1994, 127, 781–788CrossRefGoogle Scholar
  20. [20]
    Guijarro J.A., Contribution to the Balearic bioclimatology [Contribucion a la bioclimatologia de Baleares], PhD thesis, Universitat de les Illes Balears, Spain, 1986Google Scholar
  21. [21]
    Ayerbe L., Ceresuela J.L., Germination of espanolas endemic species [Germinación de especies endémicas españolas], Ann. INIA (Serie Forestal), 1982, 6, 17–41Google Scholar
  22. [22]
    Lagarda A., Martin G.C., Kester D.E., Influence of environment, seed tissue and seed maturity on ‘Manzanillo’ olive seed germination, Hort Science, 1983, 18, 869–869Google Scholar
  23. [23]
    Thanos C.A., Ecophysiology of Pinus halepensis and P. brutia. In: Ne’eman G., Trabaud L. (Eds.), Ecology, biogeography and management of Pinus halepensis and P. brutia forest in the Mediterranean Basin. Bachuys Publishers, Leiden, 2000Google Scholar
  24. [24]
    Baskin C.C., Baskin J.M., Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, 1998Google Scholar
  25. [25]
    Galmés J., Medrano H., Flexas., Germination capacity and temperature dependence in Mediterranean species of the Balearic Islands, Invest Agrar. Sist. Recur. For. 15(1), 2006, 88–95Google Scholar
  26. [26]
    Mitrakos K., Temperature germination responses in three Mediterranean evergreen sclerophylls, In: Margaris N.S., Mooney H.A. (Eds.), Components of productivity of Mediterranean Climate regions. Dr W. Junk Publishers, The Hague, 1981Google Scholar
  27. [27]
    Wuest S.B., Vapour is the principal source of water imbibed by seeds in unsaturated soils. Seed Science Research., 2007, 17, 3–9CrossRefGoogle Scholar
  28. [28]
    Skordilis A., Thanos C.A., Comparative ecophysiology of seed germination strategies in the seven pine species, naturally growing in Greece, 1997. In: Ellis R.H., Black M., Murdoch A.J., Hong T.D., Basic and Applied Aspects of seed Biology: Proceeding of the fifth International Workshop on seeds, Kluwer Academic Publishers, Dordrecht, 1995Google Scholar
  29. [29]
    Salvador R., Lloret F., Germination in the laboratory several Mediterranean shrub species: effect of temperature [Germinación en el laboratorio de varias especies arbustivas mediterráneas: efecto de la temperatura], Orsis., 1995, 10, 25–34 [in Spanish]Google Scholar
  30. [30]
    Gasque M., Colonization of esparto (Stipa tenacissima L.) in degraded semiarid climate zones [Colonización del esparto (Stipa tenacissima L.) en zonas degradadas de clima semiárido], Doctoral Thesis, ETSIA, Universidad Politécnica de Valencia, Valencia, 1999 [in Spanish]Google Scholar
  31. [31]
    Alorda M., The vegetative propagation of carob (Ceratonia siliqua L.): opportunities to improve the traditional method and application of techniques and in vitro rooting [La propagació vegetativa del garrover (Ceratonia siliqua L.): possibilitats de millora del mètode tradicional i aplicació de les tècniques d’arrelament i cultiu in vitro], Doctoral Thesis, Facultat de Ciències, Universitat de les Illes Balears, Palma de Mallorca, 1997 [in Spanish]Google Scholar
  32. [32]
    Chen H., Maun M.A., Effects of sand burial depth on seed germination and seedling emergence of Cirsium pitcher, Plant Ecol., 1999, 140, 53–60CrossRefGoogle Scholar
  33. [33]
    Seiwa K., Watanabe A., Saitoh T., Kannu H., Akasaka S., Effects of burying depth and seed size on seedling establishment of Japanese chestnuts, Castanea crenata, Forest Ecol. Manag., 2002, 164, 149–156CrossRefGoogle Scholar
  34. [34]
    Campbell D.R., Rochefort L., Germination and seedling growth of bog plants in relation to the recolonization of milled peatlands, Plant Ecol., 2003, 169, 71–84CrossRefGoogle Scholar
  35. [35]
    Gutterman Y., Seed germination in desert plants. Adaptations of desert organisms. Springer-Verlag, Berlin, 1993CrossRefGoogle Scholar
  36. [36]
    Keeley J.E., Fotheringham G.J., Trace gas emission and smoke-induced seed germination, Science, 1997, 276, 1248–1250CrossRefGoogle Scholar
  37. [37]
    Maraghni M., Gorai M., Neffati M., Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus, South African J. Botany., 2010, 76, 453–459.CrossRefGoogle Scholar
  38. [38]
    Kidson R., Westoby M., Seed mass and seedling dimensions in relation to seedling establishment, Oecologia., 2000, 125, 11–17CrossRefGoogle Scholar
  39. [39]
    Bond W.J., Honig M., Maze K.E., Seed size and seedling emergence: an allometric relationship and some ecological implications, Oecologia., 1999, 120, 132–136CrossRefGoogle Scholar
  40. [40]
    Tobe K., Zhang L., Omasa K., Seed size effects on seedling emergence of desert psammophytes in China, Arid Land Research and Management., 2007, 21, 181–192CrossRefGoogle Scholar
  41. [41]
    Ne’eman G., Goubitz S., Phenology of east Mediterranean vegetation. In: Trabaud L. (Ed.), Life and the environment in the Mediterranean. Wit Press, Boston, 2000Google Scholar
  42. [42]
    Gallardo A., Decomposition of litter in Mediterranean ecosystems [Descomposición de hojarasca en ecosistemas mediterráneos], In: Zamora R., Pugnaire F.I. (Eds.), Mediterranean Ecosystems: functional analysis [Ecosistemas Mediterráneos: Análisis funcional, Collection of college texts no32 (CSIC), Granada, 2001 [in Spanish]Google Scholar
  43. [43]
    Bender M.H., Baskin J.M., Baskin C.C., Seed germination ecology of Polymnia canadensis (Asteraceae), a monocarpic species of the North American Temperate Deciduous Forest, Plant Ecol, 2003, 168, 221–253CrossRefGoogle Scholar
  44. [44]
    Yangi Su., Xinrong Li., Rongliang Jia., Feng Li., Effect of sand burying on seed germination and seedling emergence of six Psammophytes species, J. Desert Res., 2007, 27, 968–971Google Scholar
  45. [45]
    Dzwonko Z., Gawroński S., Influence of litter and weather on seedling recruitment in a mixed oakpine woodland, Ann. Bot., 2002, 90, 245–251PubMedCrossRefGoogle Scholar
  46. [46]
    Guo cairu., Zhen-long W., Lu Ji-qi., Seed germination and seedling development of Prunus armeniaca under different burial depths in soil, J. For. Res., 2010 21(4), 492–496CrossRefGoogle Scholar
  47. [47]
    Michael PD, Paul BC., Effects of wetting and drying on seed germination and seedling emergence of bull thistle, Cirsium vulgare (Savi) Ten, Can. J. Botany., 2000, 78, 1545–1551Google Scholar
  48. [48]
    Kos M, Poschlod P., Seeds use temperature cues to ensure germination under nurse-plant shade in Xeric Kalahari Savannah, Ann. Botany., 2007, 99, 667–675CrossRefGoogle Scholar
  49. [49]
    Kos M, Poschlod P., Correlates of inter-specific variation in germination response to water stress in a semi-arid savannah, Basic Appl. Ecol., 2008, 9, 645–652CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Hanan El Aou-ouad
    • 1
    • 2
  • Hipólito Medrano
    • 1
  • Ahmed Lamarti
    • 2
  • Javier Gulías
    • 1
  1. 1.Department of Biologythe University of the Balearic IslandsPalma de MallorcaSpain
  2. 2.Département de BiologieUniversité Abdelmalek Essaadi Faculté des sciencesTetouanMorocco

Personalised recommendations