Central European Journal of Biology

, Volume 9, Issue 2, pp 156–162 | Cite as

Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum

  • Ali Razaghi
  • Anna Godhe
  • Eva Albers
Research Article


The microalga Porphyridium cruentum (Rhodophyta) has several industrial and pharmaceutical uses, especially for its polysaccharide production. This study aimed to investigate the influence of nitrogen levels as reflected by altered N:P ratios on the production and content of biomass and carbohydrate. N:P molar ratios were altered in batch cultures to range from 1.6 to 50 using the Redfield ratio of 1:16 as reference. Algal growth (estimated as final cell number, biomass concentration and maximum specific growth rate) was negatively affected at low N:P ratios. The optimal N:P ratio for growth was identified at 35–50, with specific growth rates of 0.19 day−1 and maximum cell concentrations of 59·108 cells L−1 and 1.2 g dry weight of biomass L−1. In addition, variation in cell size was seen. Cells with larger diameters were at higher N:P ratios and smaller cells at lower ratios. The cellular carbohydrate content increased under reduced nitrogen availability. However, because accumulation was moderate at the lowest N:P ratio, 0.4 g per g dry weight biomass compared to 0.24 at the Redfield ratio of 16:1, conditions for increased total carbohydrate formation were identified at the N:P ratios optimal for growth. Additionally, carbohydrates were largely accumulated in late exponential to stationary phase.


Rhodophyta Red algae Redfield ratio Nitrogen-to-phosphorous ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahern T.J., Katoh S., Sada E., Arachidonic acid production by the red alga Porphyridium cruentum, Biotechnol. Bioeng., 1983, 25, 1057–1070PubMedCrossRefGoogle Scholar
  2. [2]
    Oh S.H., Han J.G., Kim Y., Ha J.H., Kim S.S., Jeong M.H., et al., Lipid production in Porphyridium cruentum grown under different culture conditions, J. Biosci. Bioeng., 2009, 108, 429–434PubMedCrossRefGoogle Scholar
  3. [3]
    Kathiresan S., Sarada R., Bhattacharya S., Ravishankar G.A., Culture media optimization for growth and phycoerythrin production from Porphyridium purpureum, Biotechnol. Bioeng., 2007, 96, 456–463PubMedCrossRefGoogle Scholar
  4. [4]
    Arad S.M., Levy-Ontman O., Red microalgal cellwall polysaccharides: biotechnological aspects, Curr. Opin. Biotechnol., 2010, 21, 358–364PubMedCrossRefGoogle Scholar
  5. [5]
    Patel A.K., Laroche C., Marcati A., Ursu A.V., Jubeau S., Marchal L., et al., Separation and fractionation of exopolysaccharides from Porphyridium cruentum, Bioresource Technol, 2012, In Press, idoi: 10.1016/j.biortech.2012.1012.1038Google Scholar
  6. [6]
    Heaney-Kieras J., Chapman D.J., Structural studies on the extracellular polysaccharide of the red alga, Porhyridium cruentum, Carbohyd. Res., 1976, 52, 169–177CrossRefGoogle Scholar
  7. [7]
    Arad S., Adda M., Cohen E., The potential production of sulfated polysaccharides from Porphyridium, Plant Soil, 1985, 89, 117–127CrossRefGoogle Scholar
  8. [8]
    Becker E.W., Microalgae: biotechnology and microbiology, Cambridge University Press, Cambridge, 1994Google Scholar
  9. [9]
    John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 2011, 102, 186–193PubMedCrossRefGoogle Scholar
  10. [10]
    Kroen W.K., Raynburn W.R., Influence of growth status and nutrients on extracellular polysaccharide synthesis by the soil agla Chlamydomonas mexicana (Chlorophyceae), J. Phycol., 1984, 20, 253–257CrossRefGoogle Scholar
  11. [11]
    Brányiková I., Marsalková B., Doucha J., Brányik T., Bisová K., Zachleder V., et al., Microalgaenovel highly efficient starch producers, Biotechnol. Bioeng., 2011, 108, 766–776PubMedCrossRefGoogle Scholar
  12. [12]
    Yao C., Ai J., Cao X., Xue S., Zhang W., Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation, Bioresour. Technol., 2012, 118, 438–444PubMedCrossRefGoogle Scholar
  13. [13]
    Kilham S.S., Kreeger D.A., Goulden C.E., Lynn S.G., Effect of nutrient limitation on biochemical constituents of Ankistrodesmus falcatus, Freshwater. Biol., 1997, 38, 591–596CrossRefGoogle Scholar
  14. [14]
    Lourenco S.O., Lanfer Marquez U.M., Mancini-Filho J., Barbarino E., Aidar E., Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media, Aquaculture, 1997, 148, 153–168CrossRefGoogle Scholar
  15. [15]
    Ramus J., The production of extracellular polysaccharide by unicellular red alga Porphyridium aerugineum, J. Phycol., 1972, 8, 97–111Google Scholar
  16. [16]
    Arad S.M., Friedman O.D., Rotem A., Effect of nitrogen on polysaccharide production in a Porphyridium sp., Appl. Environ. Microbiol., 1988, 54, 2411–2414PubMedGoogle Scholar
  17. [17]
    Carstensen J., Henriksen P., Heiskanen A.S., Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication, Limnol. Oceanogr., 2007, 52, 370–384CrossRefGoogle Scholar
  18. [18]
    Adda M., Merchuk J.C., Arad S., Effect of nitrate on growth and production of cell-wall polysaccharide by the unicellular red alga Porphyridium, Biomass, 1986, 10, 131–140CrossRefGoogle Scholar
  19. [19]
    Levy I., Gantt E., Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation, J. Phycol., 1990, 26, 62–68CrossRefGoogle Scholar
  20. [20]
    Redfield A.C., The biological control of chemical factors in the environment, Am. Sci., 1958, 46, 205–221Google Scholar
  21. [21]
    Klausmeier C.A., Litchman E., Daufresne T., Levin S.A., Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton, Nature, 2004, 429, 171–174PubMedCrossRefGoogle Scholar
  22. [22]
    MacIntyre H.L., Cullen J.J., Using cultures to investigate the physiological ecology of microalgae, In: Andersen R.A., Ed., Algal culturing techniques. Elsevier Academic Press, London, UK, 2005, 287–326Google Scholar
  23. [23]
    Thepenier C., Gudin C., Studies on optimal conditions for polysaccharide production by Porphyridium cruentum, World J. Microbiol. Biotechnol., 1985, 1, 257–268CrossRefGoogle Scholar
  24. [24]
    Vonshak A., Cohen Z., Richmond A., The feasibility of mass cultivation of Porphyridium, Biomass, 1985, 8, 13–25CrossRefGoogle Scholar
  25. [25]
    Andersen R.A., Ed. Algal culturing techniques. Elsevier Academic Press, London, UK, 2005Google Scholar
  26. [26]
    Tunzi M.G., Chu M.Y., Bain R.C., In vivo fluorescence, extracted fluorescence, and chlorophyll concentrations in algal mass measurements, Water Res., 1974, 8, 623–635CrossRefGoogle Scholar
  27. [27]
    Lavens P., Sorgeloos P., Manual on the production and use of life food for aquaculture, FAO Fisheries Technical Papers T361, FAO, Rome, 1996, Google Scholar
  28. [28]
    Herbert D., Phipps P.J., Strange R.E., Chemical analysis of microbial cells, In: Norris J.R., Ribons D.W., Eds., Methods in microbiology. Academic Press, London, 1971, 209–344Google Scholar
  29. [29]
    Lien T., Knutsen G., Phosphate as a control factor in cell division of Chlamydomonas reinhardti, studied in synchronous culture, Exp. Cell. Res., 1973, 78, 79–88PubMedCrossRefGoogle Scholar
  30. [30]
    Roessler P.G., Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions, J. Phycol., 1990, 26, 393–399CrossRefGoogle Scholar
  31. [31]
    Young E.B., Beardall J., Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle, J. Phycol., 2003, 39, 897–905CrossRefGoogle Scholar
  32. [32]
    Percival E., Foyle R.A.J., Extracellular polysaccharides of Porphyridium cruentum and Porphyridium aerugineum, Carbohyd. Res., 1979, 72, 165–176CrossRefGoogle Scholar
  33. [33]
    Lien T., Knutsen G., Synchronous cultures of Chlamydomonas reinhardti. Synthesis of repressed and derepressed phosphatase during the life cycle, Biochim. Biophys. Acta., 1972, 287, 154–163PubMedCrossRefGoogle Scholar
  34. [34]
    Arrigo K.R., Marine microorganisms and global nutrient cycles, Nature, 2005, 437, 349–355PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
  2. 2.Chemical and Biological Engineering — Industrial BiotechnologyChalmers University of TechnologyGothenburgSweden

Personalised recommendations