Central European Journal of Biology

, Volume 8, Issue 3, pp 286–296 | Cite as

Germination ecology of Ambrosia artemisiifolia L. and Ambrosia trifida L. biotypes suspected of glyphosate resistance

  • Giovanni Dinelli
  • Ilaria Marotti
  • Pietro Catizone
  • Sara Bosi
  • Asif Tanveer
  • Rana Nadeem Abbas
  • Danijela Pavlovic
Research Article


The germination ecology of Ambrosia artemisiifolia and A. trifida glyphosate susceptible biotypes sampled in marginal areas, was compared with that of the same species but different biotypes suspected of glyphosate resistance, common and giant ragweed, respectively. The suspected resistant biotypes were sampled in Roundup Ready® soybean fields. Within each weed species, the seeds of the biotype sampled in marginal area were significantly bigger and heavier than those of the biotype sampled in the soybean fields. A. artemisiifolia biotypes exhibited a similar dormancy and germination, while differences between A. trifida biotypes were observed. A. artemisiifolia biotypes showed similar threshold temperature for germination, whereas, the threshold temperature of the susceptible A. trifida biotype was half as compared to that of the resistant A. trifida biotype. No significant differences in emergence as a function of sowing depth were observed between susceptible A. artemisiifolia and suspected resistant A. trifida biotype, while at a six-cm seedling depth the emergence of the A. artemisiifolia susceptible biotype was 2.5 times higher than that of the A. trifida suspected resistant biotype. This study identified important differences in seed germination between herbicide resistant and susceptible biotypes and relates this information to the ecology of species adapted to Roundup Ready® fields. Information obtained in this study supports sustainable management strategies, with continued use of glyphosate as a possibility.


Ambrosia artemisiifolia Ambrosia trifida Glyphosate resistance Seed ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bridges D.C., Crop losses due to weeds in the United States. Weed Science Society of America, Champaign, IL, USA, 1992Google Scholar
  2. [2]
    Bassett I.J., Crompton C.W., The biology of Canadian weeds, 11: Ambrosia artemisiifolia L. and A. psilostachya, Can. J. Plant. Sci., 1975, 55, 463–476CrossRefGoogle Scholar
  3. [3]
    Bassett I.J., Crompton C.W., The biology of Canadian weeds, 55: Ambrosia trifida L, Can. J. Plant. Sci., 1982, 62, 1002–1010CrossRefGoogle Scholar
  4. [4]
    Harrison S.K., Regnier E.E., Schmoll J.T., Webb J., Competition and fecundity of Ambrosia trifida in Zea mays, Weed Sci., 2001, 49, 224–229CrossRefGoogle Scholar
  5. [5]
    Baysinger J.A., Sims B.D., Giant ragweed (Ambrosia trifida L.) interference in soybeans (Glycine max), Weed Sci., 1991, 39, 358–362Google Scholar
  6. [6]
    Webster T.M., Loux M.M., Regnier E.E., Harrison S.K., Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max), Weed Technol., 1994, 8, 559–564Google Scholar
  7. [7]
    Davis A., Renner K., Sprague C., Dyer L., Mutch D., Integrated Weed Management 2005, Michigan State University, 2005,
  8. [8]
    Rybncek O., Jager S., Ambrosia (ragweed) in Europe, Allergy Clin. Immunol. Int., 2001, 13, 60–66CrossRefGoogle Scholar
  9. [9]
    Gergen P.J., Turkeltaub P.C., Kovar M.D., The prevalence of allergic skin test reactivity to eight common aeroallergens in the US population: results from the second National Health and Nutrition Examination survey, J. Allergy Clin. Immunol., 1987, 80, 669–679PubMedCrossRefGoogle Scholar
  10. [10]
    Wiese A.M., Binning L.K., Calculating the threshold of temperature of development for weeds, Weed Sci., 1987, 35, 177–179Google Scholar
  11. [11]
    Willemsen R.W., Rice E.L., Mechanism of seed dormancy in Ambrosia artemisiifolia, Am. J. Bot., 1972, 59, 248–257CrossRefGoogle Scholar
  12. [12]
    Schutte B.J., Regnier E.E., Harrison S.K., Primary seed dormancy in Ambrosia trifida (giant ragweed), North Central Weed Sci. Soc., 2004, 59, 119Google Scholar
  13. [13]
    Davis W.E., Primary dormancy, after-ripening, and the development of secondary dormancy in embrios of Ambrosia trifida, Am. J. Bot., 1930, 17, 58–61CrossRefGoogle Scholar
  14. [14]
    Ballard T.O., Foley M.E., Bauman T.T., Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L.) seed, J. Plant. Physiol., 1996, 149, 229–232CrossRefGoogle Scholar
  15. [15]
    Willemsen R.W., Effect of stratification temperature and germination temperature on germination and the induction of secondary dormancy in common ragweed seeds, Am. J. Bot., 1975a, 62, 1–5CrossRefGoogle Scholar
  16. [16]
    Willemsen R.W., Dormancy and germination of common ragweed seed in the field, Am. J. Bot., 1975b, 62, 639–643CrossRefGoogle Scholar
  17. [17]
    Baskin J.M., Baskin C.C., Ecophysiology of secondary dormancy in seeds of Ambrosia artemisiifolia, Ecology, 1980, 61, 475–480CrossRefGoogle Scholar
  18. [18]
    Bazzaz F.A., Secondary dormancy in the seeds of the common ragweed Ambrosia artemisiifolia, Bull. Torrey. Bot. Club, 1970, 97, 302–305CrossRefGoogle Scholar
  19. [19]
    Abul-Fatih H.A., Bazzaz F.A., The biology of Ambrosia trifida L. II. Germination, emergence and survival, New Phytol., 1979, 83, 817–827CrossRefGoogle Scholar
  20. [20]
    Pickett S.T., Baskin J.M., The role of temperature and light in the germination behavior of Ambrosia artemisiifolia, Bull. Torrey. Bot. Club, 1973, 100, 165–170CrossRefGoogle Scholar
  21. [21]
    Heap I., International survey of herbicide resistant plants, 2012,
  22. [22]
    Seber G.A.F., Wild C.J., Nonlinear Regression, Wiley, New York, USA, 1989CrossRefGoogle Scholar
  23. [23]
    Sako Y., Regnier E.E., Daoust T., Fujimura K., Harrison S.K., Miller B., et al., Computer image analysis and classification of giant ragweed seeds, Weed Sci., 2001, 49, 738–745CrossRefGoogle Scholar
  24. [24]
    Dinelli G., Marotti I., Bonetti A., Minelli M., Catizone P., Barnes J., Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. Biotypes, Pestic. Biochem. Physiol., 2006, 86, 30–41CrossRefGoogle Scholar
  25. [25]
    Steel R.G.D., Torrie J.H., Principles and Procedure of Statistics: a Biometric Approach. 2nd edn, McGraw-Hill, New York, USA, 1980Google Scholar
  26. [26]
    Baxes G., Digital Image Processing, Wiley, New York, USA, 1994Google Scholar
  27. [27]
    Dinelli G., Marotti I., Bonetti A., Catizone P., Urbano J.M., Barnes J., Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain, Weed Res., 2008, 48, 1–9CrossRefGoogle Scholar
  28. [28]
    Urbano J.M., Borrego A., Torres V., Leon J.M., Jimenez C., Dinelli G., Barnes J., Glyphosateresistant hairy fleabane (Conyza bonariensis) in Spain, Weed Technol., 2007, 21, 396–401CrossRefGoogle Scholar
  29. [29]
    Perez-Jones A., Park K.W., Polge N., Colquhoun J., Mallory-Smith C.A., Investigating the mechanisms of glyphosate resistance in Lolium multiflorum, Planta, 2007, 226, 395–404PubMedCrossRefGoogle Scholar
  30. [30]
    Powles S.B., Lorraine-Colwill D.F., Dellow J.J., Preston C., Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia, Weed Sci., 1998, 46, 604–607Google Scholar
  31. [31]
    Lee L.J., Ngim J., A first report of glyphosateresistant goosegrass (Elusine indica (L) Gaertn) in Malaysia, Pest. Manag. Sci., 2000, 56, 336–339CrossRefGoogle Scholar
  32. [32]
    Jordan D.L., York A.C., Griffin J.L., Clay P.A., Vidrine P.R., Reynolds D.B., Influence of application variables on efficacy of glyphosate, Weed Technol., 1997, 11, 354–362Google Scholar
  33. [33]
    Arnold J.C.D., Shaw R., Scharer S.M., Influence of application timing on efficacy of glyphosate in Roundup Ready soybean, Proc. South. Weed Sci. Soc., 1997, 50, 176–177Google Scholar
  34. [34]
    Hennen S., Scursoni J., Forcella F., Delayed weed emergence and escape from control in glyphosatetolerant soybean, North Central Weed Sci. Soc., 2002, 57, 126Google Scholar
  35. [35]
    Payne S.A., Oliver L.R., Weed control programs in drilled glyphosate-resistant soybean, Weed Technol., 2000, 14, 413–422CrossRefGoogle Scholar
  36. [36]
    Scursoni J.A., Forcella F., Gunsolus J., Weed escapes and delayed weed emergence in glyphosate-resistant soybean, Crop. Prot., 2007, 26, 212–218CrossRefGoogle Scholar
  37. [37]
    Di Tommaso A., Germination behaviour of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities, Weed Sci., 2004, 52, 1002–1009CrossRefGoogle Scholar
  38. [38]
    Mohler C.L., Galford A.E., Weed seedling emergence and survival: separating the effects of seed position and soil modification by tillage, Weed Res., 1997, 37, 147–155CrossRefGoogle Scholar
  39. [39]
    White S.S., Renner K.A., Menalled F.D., Landis D.A., Feeding preferences of weed seed predators and effect on weed emergence, Weed Sci., 2007, 55, 606–612CrossRefGoogle Scholar
  40. [40]
    Heggenstaller A.H., Menalled F.D., Liebman M., Westerman P.R., Seasonal patterns in postdispersal seed predation of Abutilon theophrasti and Setaria faberi in three-cropping systems, J. Appl. Ecol., 2006, 43, 999–1010CrossRefGoogle Scholar
  41. [41]
    Louda S.M., Predation in the Dynamics of Seed Generation. In: Leck M.A., Parker V.T., Simpson R.L. (eds) Ecology of Soil Seed Banks, Academic Press, New York, USA, 1989Google Scholar
  42. [42]
    Menalled F., Smith R., Dauer J., Fox T., Impact of agricultural management on carabid communities and weed seed predation, Agric. Ecosyst. Environ., 2007, 118, 49–54CrossRefGoogle Scholar
  43. [43]
    Brust G.E, House G.I., Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems, Am. Journal Alternative Agr, 1988, 3, 19–25CrossRefGoogle Scholar
  44. [44]
    Hulme P.E., Post-dispersal seed predation and seed bank persistence, Seed Sci. Res., 1998, 8, 513–519CrossRefGoogle Scholar
  45. [45]
    Zhishu X., Yushan W., Harris M., Zhibin Z., Spatial and temporal variation of seed predation and removal of sympatric large-seeded species in relation to innate seed traits in a subtropical forest, Southwest China, Forest Ecol. Manag., 2006, 222, 46–54Google Scholar
  46. [46]
    Moles A.T., Warton D.I., Westoby M., Do smallseeded species have higher survival through seed predation than large-seeded species? Ecology, 2003, 84, 3148–3161CrossRefGoogle Scholar
  47. [47]
    Harrison S.K., Regnier E.E., Schmoll J.T., Postdispersal predation of giant ragweed (Ambrosia trifida) seed in no-tillage corn, Weed Sci., 2003, 51, 955–964CrossRefGoogle Scholar
  48. [48]
    Mueller T.C., Massey J.H., Hayes R.M., Main C.L., Stewart C.N., Shikimate accumulates in both glyphosate sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.), J. Agric. Food Chem., 2003, 51, 680–684PubMedCrossRefGoogle Scholar
  49. [49]
    Pline-Srnic W., Technical performance of some commercial glyphosate-resistant crops, Pest. Manag. Sci., 2005, 61, 225–234PubMedCrossRefGoogle Scholar
  50. [50]
    Stewart C.N., Another type of superweed? In: Stewart C.N. (ed) Genetically Modified Planet. Environmental Aspects of Genetically Engineered Plants, Oxford University Press, UK, 2004Google Scholar
  51. [51]
    Sandermann H., Plant biotechnology: ecological case studies on herbicide resistance, Trends Plant. Sci., 2006, 11, 324–328PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Giovanni Dinelli
    • 1
  • Ilaria Marotti
    • 1
  • Pietro Catizone
    • 1
  • Sara Bosi
    • 1
  • Asif Tanveer
    • 2
  • Rana Nadeem Abbas
    • 2
  • Danijela Pavlovic
    • 3
  1. 1.Department of Agricultural SciencesUniversity of BolognaBolognaItaly
  2. 2.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of HerbologyInstitute for Plant Protection and EnvironmentBelgradeSerbia

Personalised recommendations