Central European Journal of Biology

, Volume 7, Issue 6, pp 1005–1012 | Cite as

The effect of mental rotation on changes in plasma testosterone and cortisol levels

  • Jaroslava DurdiakováEmail author
  • Július Hodosy
  • Aneta Kubranská
  • Daniela Ostatníková
  • Peter Celec
Research Article


Testosterone level has an influence on cognitive functions, especially spatial abilities. The relationship is, however, bidirectional and brain activity also affects testosterone levels. The aim of this study was to analyze the effects of an intensive 3D mental rotation task on testosterone levels in young healthy men and women. In the mental rotation task, men reached a higher top score (P=0.027) and total score (P=0.004) compared to women. In 8 out of 9 women (P=0.008) but not in men (P=0.129) testosterone levels decreased after one hour of mental rotation testing. A significant gender difference was shown (P<0.0001). In all women, plasma cortisol levels was significantly lower after testing (P=0.004). In men cortisol levels decreased in 7 out of 9 subjects (P=0.039). A significant gender difference was not found (P=0.19). No association was found in women between baseline testosterone levels and mental rotation total score (P=0.810). In men there was a positive correlation between baseline testosterone and mental rotation total score (P=0.015). A significant difference gender difference was seen in the association between testosterone and mental rotation score (P<0.05). Mental rotation stimuli caused significant changes in hormonal levels of testosterone and cortisol. A gender-specific response was detected in testosterone fluctuation.


Mental rotation Testosterone Cortisol Hormonal changes Plasma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gouchie C., Kimura D., The relationship between testosterone levels and cognitive-ability patterns, Psychoneuroendocrinology, 1991, 16, 323–334PubMedCrossRefGoogle Scholar
  2. [2]
    Griksiene R., Ruksenas O., Effects of hormonal contraceptives on mental rotation and verbal fluency, Psychoneuroendocrinology, 2011, 36, 1239–1248PubMedCrossRefGoogle Scholar
  3. [3]
    Hausmann M., Slabbekoorn D., Van Goozen S.H.M., Cohen-Kettenis P.T., Gunturkun O., Sex hormones affect spatial abilities during the menstrual cycle, Behav Neurosci, 2000, 114, 1245–1250PubMedCrossRefGoogle Scholar
  4. [4]
    Heil M., Kavsek M., Rolke B., Beste C., Jansen P., Mental rotation in female fraternal twins: Evidence for intra-uterine hormone transfer?, Biol. Psychol., 2011, 86, 90–93PubMedCrossRefGoogle Scholar
  5. [5]
    Janowsky J.S., Oviatt S.K., Orwoll E.S., Testosterone influences spatial cognition in older men, Behav Neurosci, 1994, 108, 325–332PubMedCrossRefGoogle Scholar
  6. [6]
    McEwen B.S., Alves S.E., Bulloch K., Weiland N.G., Ovarian steroids and the brain: Implications for cognition and aging, Neurology, 1997, 48, 8–15CrossRefGoogle Scholar
  7. [7]
    Ostatnikova D., Hodosy J., Skoknova M., Putz Z., Kudela M., Celec P., Spatial abilities during the circalunar cycle in both sexes, Learn. Individ. Differ., 2010, 20, 484–487CrossRefGoogle Scholar
  8. [8]
    Goldey K.L., Van Anders S.M., Sexy thoughts: effects of sexual cognitions on testosterone, cortisol, and arousal in women, Horm. Behav., 2011, 59, 754–764PubMedCrossRefGoogle Scholar
  9. [9]
    Escasa M.J., Casey J.F., Gray P.B., Salivary testosterone levels in men at a U.S. sex club, Arch. Sex. Behav., 2011, 40, 921–926PubMedCrossRefGoogle Scholar
  10. [10]
    Marazziti D., Canale D., Hormonal changes when falling in love, Psychoneuroendocrinology, 2004, 29, 931–936PubMedCrossRefGoogle Scholar
  11. [11]
    Carre J.M., Putnam S.K., Watching a previous victory produces an increase in testosterone among elite hockey players, Psychoneuroendocrinology, 2010, 35, 475–479PubMedCrossRefGoogle Scholar
  12. [12]
    Biondi M., Picardi A., Psychological stress and neuroendocrine function in humans: the last two decades of research, Psychother. Psychosom., 1999, 68, 114–150PubMedCrossRefGoogle Scholar
  13. [13]
    Schoofs D., Wolf O.T., Are salivary gonadal steroid concentrations influenced by acute psychosocial stress? A study using the Trier Social Stress Test (TSST), Int. J. Psychophysiol., 2011, 80, 36–43PubMedCrossRefGoogle Scholar
  14. [14]
    Mejias-Aponte C.A., Jimenez-Rivera C.A., Segarra A.C., Sex differences in models of temporal lobe epilepsy: role of testosterone, Brain Res., 2002, 944, 210–218PubMedCrossRefGoogle Scholar
  15. [15]
    Sapienza P., Zingales L., Maestripieri D., Gender differences in financial risk aversion and career choices are affected by testosterone, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 15268–15273PubMedCrossRefGoogle Scholar
  16. [16]
    Neubauer A.C., Bergner S., Schatz M., Two- vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation, Intelligence, 2010, 38, 529–539PubMedCrossRefGoogle Scholar
  17. [17]
    Hugdahl K., Thomsen T., Ersland L., Sex differences in visuo-spatial processing: An fMRI study of mental rotation, Neuropsychologia, 2006, 44, 1575–1583PubMedCrossRefGoogle Scholar
  18. [18]
    Flegr J., Priplatova L., Testosterone and cortisol levels in university students reflect actual rather than estimated number of wrong answers on written exam, Neuro. Endocrinol. Lett., 2010, 31, 577–581PubMedGoogle Scholar
  19. [19]
    Charlton H., Hypothalamic control of anterior pituitary function: a history, J. Neuroendocrinol., 2008, 20, 641–646PubMedCrossRefGoogle Scholar
  20. [20]
    Mazur A., Susman E.J., Edelbrock S., Sex difference in testosterone response to a video game contest, Evol Hum Behav, 1997, 18, 317–326CrossRefGoogle Scholar
  21. [21]
    Lashansky G., Saenger P., Fishman K., Gautier T., Mayes D., Berg G., et al., Normative data for adrenal steroidogenesis in a healthy pediatric population: age- and sex-related changes after adrenocorticotropin stimulation, J. Clin. Endocrinol. Metab., 1991, 73, 674–686PubMedCrossRefGoogle Scholar
  22. [22]
    Flegr J., Hampl R., Cernochova M., Preiss M., Bicikova M., Sieger L., et al., The relation of cortisol and sex hormone levels to results of psychological, performance, IQ and memory tests in military men and women, Neuro. Endocrinol. Lett., 2012, 33, 224–235PubMedGoogle Scholar
  23. [23]
    O’Connor B.D., Archer J., Hair W.M., Wu F.C.W., Activational effects of testosterone on cognitive function in men, Neuropsychologia, 2001, 39, 1385–1394PubMedCrossRefGoogle Scholar
  24. [24]
    Celec P., Ostatnikova D., Putz Z., Kudela M., The circalunar cycle of salivary testosterone and the visual-spatial performance, Bratisl. Lek. Listy, 2002, 103, 59–69PubMedGoogle Scholar
  25. [25]
    Carre J.M., Gilchrist J.D., Morrissey M.D., McCormick M.C., Motivational and situational factors and the relationship between testosterone dynamics and human aggression during competition, Biol. Psychol., 2010, 84, 346–353PubMedCrossRefGoogle Scholar
  26. [26]
    Richardson A.E., VanderKaay Tomasulo M.M., Influence of acute stress on spatial tasks in humans, Physiol. Behav., 2011, 103, 459–466PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Jaroslava Durdiaková
    • 1
    • 2
    Email author
  • Július Hodosy
    • 1
    • 2
  • Aneta Kubranská
    • 1
  • Daniela Ostatníková
    • 1
  • Peter Celec
    • 2
    • 3
    • 4
  1. 1.Institute of Physiology, Faculty of MedicineComenius UniversityBratislavaSlovakia
  2. 2.Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
  3. 3.Institute of Pathophysiology, Faculty of MedicineComenius UniversityBratislavaSlovakia
  4. 4.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations