Advertisement

Central European Journal of Biology

, Volume 7, Issue 4, pp 672–679 | Cite as

Bioactive content and antioxidant capacity of Cape gooseberry fruit

  • Otakar RopEmail author
  • Jiri Mlcek
  • Tunde Jurikova
  • Magdalena Valsikova
Research Article

Abstract

At present, Cape gooseberry (Physalis peruviana) fruit is one of the less used raw materials of plant origin, which can be used for human nutrition. This fruit, as well as alimentary products made of it, were used by healers in folk medicine in the distant past. The aim of this study was to monitor and evaluate the antioxidant capacity of fresh fruit of three Cape gooseberry cultivars ‘Giant’, ‘Golden berry’ and ‘Inka’. Antioxidant capacity was also tested, on the basis of the scavenging effect of reactive oxygen species (ROS) and lipid peroxidation of methanolic extracts made of fresh fruit. These results were further extended and supplemented with determinates of the vitamin C and total phenolic contents. These analyses were made for three consecutive years. The highest values of antioxidant capacity were observed in the ‘Inka’ cultivar (9.31 grams of ascorbic acid equivalents kg−1 of fresh mass). In this cultivar, the obtained results were corroborated also in ROS and the contents of vitamin C and total phenolics. Due to a high antioxidant capacity of this fruit species, the results presented should increase its popularity above all as a promising raw material, which can be used for human nutrition.

Keywords

Physalis peruviana Phenolics, flavonoids Ascorbic acid Reactive oxygen species Lipid peroxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hassanien M.F.R., Physalis peruviana: a rich source of bioactive phytochemicals for functional foods and pharmaceuticals, Food Rev. Int., 2011, 27, 259–273CrossRefGoogle Scholar
  2. [2]
    Tomassini T.C.B., Barbi N.S., Ribeiro I.M., Xavier D.C.D., Genus Physalis — A revision of Withasteroids, Quim. Nova, 2000, 23, 47–57CrossRefGoogle Scholar
  3. [3]
    Valicek P., Utility plants of the tropics and subtropics [Uzitkove rostliny tropu a subtropu], 1st ed., Academia, Prague, 1989, (in Czech)Google Scholar
  4. [4]
    Samla J., Subtropics: Cultivation manual [Subtropy: Pestitelske praktikum], 1st ed., Citrusar, Brno, 1993, (in Czech)Google Scholar
  5. [5]
    Dlouha J., Richter M., Valicek P., Fruit [Ovoce], 1st ed., Aventinum, Prague, 1997, (in Czech)Google Scholar
  6. [6]
    Aruoma O.I., Nutrition and health aspects of free radicals and antioxidants, Food Chem. Toxicol., 1994, 62, 671–683Google Scholar
  7. [7]
    Wang Z., Hsu Ch., Yin M., Antioxidative characteristics of aqueous and ethanol extracts of glossy privat fruit, Food Chem., 2009, 112, 914–918CrossRefGoogle Scholar
  8. [8]
    Rop O., Jurikova T., Sochor J., Mlcek J., Kramarova D., Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from Central Europe, J. Food Quality, 2011, 34, 187–194CrossRefGoogle Scholar
  9. [9]
    Drogoudi P.D., Michailidis Z., Pantelidisa G., Peel and flesh antioxidant content and harvest quality characteristics of seven apple cultivars, Sci. Hortic., 2008, 115, 149–153CrossRefGoogle Scholar
  10. [10]
    Wu S.J., Ng L.T., Huang Y.M., Lin D.L., Wang S.S., Huang S.N., et al., Antioxidant activities of Physalis peruviana, Biol. Pharm. Bull., 2005, 28, 963–966PubMedCrossRefGoogle Scholar
  11. [11]
    Anonymous, Data from Central Institute for Supervising and Testing in Agriculture, 1st ed., UKZUZ, Brno, 2008Google Scholar
  12. [12]
    Barros L., Baptista P., Ferreira I.C.F.R., Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays, Food Chem. Toxicol., 2007, 45, 1731–1737PubMedCrossRefGoogle Scholar
  13. [13]
    Kim D.O., Neony S.W., Lee C.Y., Antioxidant capacity of phenolic phytochemicals from various cultivars of plums, Food Chem., 2003, 51, 321–326CrossRefGoogle Scholar
  14. [14]
    Brand-Williams W., Cuvelier M.E., Verset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 1995, 28, 25–30CrossRefGoogle Scholar
  15. [15]
    Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 2006, 19, 669–675CrossRefGoogle Scholar
  16. [16]
    Sulc M., Lachman J., Hamouz K., Orsak M., Dvorak P., Horackova V., Selection and evaluation of methods for determination of antioxidant activity of purple- and red-fleshed potato varieties, Chem. Listy, 2007, 101, 584–591Google Scholar
  17. [17]
    Rupasinghe V.H.P., Jayasankar S., Lay W., Variation in total phenolic and antioxidant capacity among European plum genotypes, Sci. Hortic., 2006, 108, 243–246CrossRefGoogle Scholar
  18. [18]
    Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Analysis of total phenols and other oxidation substrates and antioxidants by Folin-Ciocalteu reagent, Method. Enzymol., 1999, 299, 152–178CrossRefGoogle Scholar
  19. [19]
    Ghiselli A., Nardini M., Baldi A., Scaccini C., Antioxidant activity of different phenolic fractions separated from an Italian red wine, J. Agr. Food Chem., 1998, 46, 361–367CrossRefGoogle Scholar
  20. [20]
    Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R., Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Anal. Biochem., 1982, 126, 131–138PubMedCrossRefGoogle Scholar
  21. [21]
    Beissenhirtz M.K., Kwan R.C., Ko K.M., Renneberg R., Schiller F.W., Liskat F., Comparing an in vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs, Phytother. Res., 2004, 18, 149–153PubMedCrossRefGoogle Scholar
  22. [22]
    Anup S., Shereen R.H., Shivanandappa T., Antioxidant activity of the roots of Decalepis hamiltonii, LWT-Food Sci. Technol., 2006, 36, 1059–1065Google Scholar
  23. [23]
    Miki N., High-performance liquid-chromatographic determination of ascorbic acid in tomato products, J. Jpn. Soc. Food Sci., 1981, 28, 264–268CrossRefGoogle Scholar
  24. [24]
    Snedecor G.W., Cochran W.G., Statistical Methods, 7th ed., Iowa State University, Ames, 1967Google Scholar
  25. [25]
    Tetera V., Fruit of the White Carpathians [Ovoce Bilych Karpat], 1st ed., CSOP, Veseli nad Moravou, 2006, (in Czech)Google Scholar
  26. [26]
    Kovacikova E., Vojtassakova A., Holcikova K., Simonova E., Food charts [Potravinove tabulky], 1st ed., VUP, Bratislava, 1997, (in Slovak)Google Scholar
  27. [27]
    Yilmaz K.U., Ercisli S., Zengin Y., Sengul M., Kafkas E.Y., Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties, Food Chem., 2009, 114, 408–412CrossRefGoogle Scholar
  28. [28]
    Ercisli S., Esitken A., Fruit characteristics of native rose hip (Rosa spp.) selections from the Erzurum province of Turkey, New Zeal. J. Crop Hort., 2004, 32, 51–53CrossRefGoogle Scholar
  29. [29]
    Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrostland R.E., Antocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes, J. Agr. Food Chem., 2002, 50, 519–525CrossRefGoogle Scholar
  30. [30]
    Rop O., Jurikova T., Mlcek J., Kramarova D., Sengee Z., Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains, Sci. Hortic., 2009, 122, 545–549CrossRefGoogle Scholar
  31. [31]
    Schmitz-Eiberger M., Weber V., Treutter D., Baab G., Lorenz J., Bioactive components in fruits from different apple varieties, J. Appl. Bot., 2003, 77, 167–171Google Scholar
  32. [32]
    Jung H.A., Kim A.R., Chung H.Y., Choi J.S., In vitro activity of some selected Prunus species in Korea, Arch. Pharm. Res., 2002, 25, 865–872PubMedCrossRefGoogle Scholar
  33. [33]
    Usenik V., Fabcic J., Stampar F., Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.), Food Chem., 2008, 107, 185–192CrossRefGoogle Scholar
  34. [34]
    Kulling E., Radel H.M., Chokeberry — A Review on the characteristics components and potential health effects, Planta Med., 2008, 74, 1625–1634PubMedCrossRefGoogle Scholar
  35. [35]
    Jurikova T., Rop O., Mlcek J., Sochor J., Balla S., Szekeres L., et al., Phenolic profile of edible honeysuckle berries (Genus Lonicera) and their biological effects, Molecules, 2012, 17, 61–79CrossRefGoogle Scholar
  36. [36]
    Paksi A.M., Kassai T., Lugasi A., Ombodi A., Dimeny J., Physalis peruvina L. an alternative crop for small scale frams, Cereal Res. Commun., 2007, 35, 877–880CrossRefGoogle Scholar
  37. [37]
    Kyzlink V., Principles of food preservation, 1st ed., Elsevier, Amsterdam, 1990Google Scholar
  38. [38]
    Velisek J., Chemie potravin, 1st ed., OSSIS, Tabor, 2002, (in Czech)Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Otakar Rop
    • 1
    Email author
  • Jiri Mlcek
    • 1
  • Tunde Jurikova
    • 2
  • Magdalena Valsikova
    • 3
  1. 1.Department of Food Technology and MicrobiologyTomas Bata UniversityZlinCzech Republic
  2. 2.Department of Natural and Informatics SciencesConstantine the Philosopher UniversityNitraSlovak Republic
  3. 3.Department of Vegetables ProductionSlovak University of AgricultureNitraSlovak Republic

Personalised recommendations