Central European Journal of Biology

, Volume 7, Issue 2, pp 327–333 | Cite as

Biological activities of phenolic compounds and ethanolic extract of Halacsya sendtneri (Boiss) Dőrfler

  • Pavle Mašković
  • Jelena Dragišić Maksimović
  • Vuk Maksimović
  • Jelena Blagojević
  • Mladen Vujošević
  • Nedeljko T. Manojlović
  • Marija Radojković
  • Milica Cvijović
  • Slavica Solujić
Research Article


The objective of this study was to evaluate the efficacy of the ethanolic extract of endemic plant Halacsya sendtneri in inhibiting the growing of the test fungi and bacteria as well as to determine its genotoxic potential and toxicity using the Allium anaphase-telophase assay. Minimum inhibitory concentrations (MIC) were determined for 15 indicator strains of pathogens, representing both bacteria and fungi. The highest susceptibility to the ethanolic extract of H.sendtneri was exhibited by Pseudomonas glycinea (FSB4), (MIC=0.09 mg/ml) among the bacteria, and by Phialophora fastigiata (FSB81), (MIC=1.95 mg/ml) among the fungi. The composition of H. sendtneri extracts was also determined using HPLC analysis. Rosmarinic acid was found to be the dominant phenolic compound. The Allium anaphase-telophase genotoxicity assay revealed that the ethanolic extract of H. sendtneri at concentrations of 31.5 mg/l and below does not produce toxic or genotoxic effects. This is the first report of chemical constituents, genotoxic and antimicrobial activities of the endemic species, H. sendtneri.


Antimicrobial activity Genotoxicity Halacsya sendtneri Phenolic compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kuete V., Fozing D.C, Kapche F.G.D, Mbaveng A.T, Kuiate J.R, Ngadju B.T., et al., Antimicrobial activity of the methanolic extract and compounds from Morus mesozygia stem bark, J Ethnopharmacol., 2009, 124,3, 551–555PubMedCrossRefGoogle Scholar
  2. [2]
    Burt S., Essential oils: their antibacterial properties and potential applications in foods, Int J Food Microbiol., 2004, 94, 223–253PubMedCrossRefGoogle Scholar
  3. [3]
    Cowan M. M., Plant products as antimicrobial agents, Clin Microbiol Rev. 12 (1999) 564–582.PubMedGoogle Scholar
  4. [4]
    Josifovic M., The Flora of SR Serbia VI, Serbian Academy of Sciences and Arts, Belgrade, 1970–1977Google Scholar
  5. [5]
    Gottschling M., Hilger H.H., Wolf M., Diane N., Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales, Plant Biology, 2001, 3, 629–636CrossRefGoogle Scholar
  6. [6]
    Zhou R.H., Duan J.A., Plant Chemotaxonomy 1028, Shanghai scientific & Technical Publishers, Shanghai, 2005Google Scholar
  7. [7]
    Iqbal K., Nawaz S.A., Malik A., Riaz N., Mukhtar N., Mohammad P., Choudhary M. I., Isolation and lipoxygenase-inhibition studies of phenolic constituents from Ehretia obtusifolia, Chem. Biodi., 2005, 2, 104–111CrossRefGoogle Scholar
  8. [8]
    Wu Z.Y., Xinhua bencao gangyao. 12. Shanghai scientific & Technical Publishers, Shanghai, 1990Google Scholar
  9. [9]
    Zeng M.Y., Zeng J.F., China traditional Chinese medicine resources Zhi Yao, 7. Science Press, Beijing, 1994Google Scholar
  10. [10]
    Silic C., Endemic Plants, “Svjetlost“, Sarajevo, Textbook Publishing and Teaching Aids Institute, Belgrade, 1984Google Scholar
  11. [11]
    Jaksic P., Tertiary Relict Species of Upland Temperate and Cold Zones, in: Proceedings of the 6th Symposium on the Flora of Southeastern Serbia and Surrounding Regions, Sokobanja, 2000, pp 351–366Google Scholar
  12. [12]
    Stevanović V., Vasic V., Biodiversity in Yugoslavia and Review of Species of International Importance, Ekolibri, Faculty of Biology, Belgrade, 1995Google Scholar
  13. [13]
    Mehlika B., Nazife Y., Fatmagü G., Kerim G., Umit B., Antimicrobial activity of endemic Digitalis lamarckii Ivan from Turkey, Indian J Exp Biol, 2009, 47, 218–221Google Scholar
  14. [14]
    Grant W.F., Higher plant assays for the detection of chromosomal aberrations and gene mutations — a brief historical background on their use for screening and monitoring environmental chemicals, Mutation Research., 1999, 426, 107–112PubMedCrossRefGoogle Scholar
  15. [15]
    Kalcheva V., Dragoeva A., Kalchev K., Enchev D., Cytotoxic and genotoxic effects of Br-containing oxaphosphole on Allium cepa L. root tip cells and mouse bone marrow cells, Genet Mol Biol., 2009, 32, 389–393PubMedCrossRefGoogle Scholar
  16. [16]
    Fiskesjö G., The Allium test in a wastewater monitoring, Environ. Toxicol. Water Qual., 1993, 8, 291–298CrossRefGoogle Scholar
  17. [17]
    Majer J., Grummt T., Uhl M., Knasmuller S., Use of plant bioassays for the detection of genotoxins in the aquatic environment, Acta Hydrochim Hydrobiol., 2005, 33, 45–55CrossRefGoogle Scholar
  18. [18]
    Vujosevic M., Andjelkovic S., Savic G., Blagojevic J., Genotoxicity screening of the river Rasina in Serbia using the Allium anaphase-telophase test, Environ Monit Assess., 2008, 147, 75–81PubMedCrossRefGoogle Scholar
  19. [19]
    Al-Sabti K., Kurelec B., Chromosomal aberration in onion (Allium cepa) induced by water chlorination by-products, Bull Environ Contam Toxicol., 1985, 34, 80–88PubMedCrossRefGoogle Scholar
  20. [20]
    Blagojevic J., Stamenkovic G., Vujosevic M., Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test, Chemosphere., 2009, 74, 1344–1347CrossRefGoogle Scholar
  21. [21]
    Rank J., The method of Allium anaphase-telophase chromosome aberration assay, Ekologija (Vilnius), 2003, 1, 38–42Google Scholar
  22. [22]
    Niciforovic N., Mihailovic V., Maskovic P., Solujic S., Stojkovic A. and Pavlovic Muratspahic D. Antioxidant activity of selected plant species; potential new sources of natural antioxidants. Food Chem Toxicol., 2010, 48, 3125–3130PubMedCrossRefGoogle Scholar
  23. [23]
    Satyajit D.S., Lutfun N., Yashodharan K., Microtitre plate-based antibacterial assay incorporating resazurin as indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals, Methods, 2007, 42, 321–324CrossRefGoogle Scholar
  24. [24]
    Fiskesjo G., The Allium test as a standard in environmental monitoring, Hereditas., 1985, 102, 99–112PubMedCrossRefGoogle Scholar
  25. [25]
    Rank J., Nielsen M.H., A modified Allium test as a tool in the screening of genotoxicity of complex mixtures, Hereditas, 1993, 118, 49–53CrossRefGoogle Scholar
  26. [26]
    Petersen M., Simmonds M.S.J., Rosmarinic acid, Phytochemistry, 2003, 62, 121–125PubMedCrossRefGoogle Scholar
  27. [27]
    Frankel E.N., Natural phenolic antioxidants and their impact on health, In: Packer L., M. Hiramatsu, Yoshikawa T. (Eds.), Antioxidant Food Supplements in Human Health, Academic Press, San Diego, 1999Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Pavle Mašković
    • 1
  • Jelena Dragišić Maksimović
    • 2
  • Vuk Maksimović
    • 2
  • Jelena Blagojević
    • 3
  • Mladen Vujošević
    • 3
  • Nedeljko T. Manojlović
    • 4
  • Marija Radojković
    • 5
  • Milica Cvijović
    • 1
  • Slavica Solujić
    • 6
  1. 1.Faculty of AgronomyUniversity of KragujevacČačakSerbia
  2. 2.Department of Life Sciences, Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Genetic ResearchUniversity of Belgrade, Institute of Biological ResearchBelgradeSerbia
  4. 4.Department of Pharmacy, Medical FacultyUniversity of KragujevacKragujevacSerbia
  5. 5.Department of Biotechnology and Pharmaceutical Engineering, Faculty of TechnologyUniversity of Novi SadNovi SadSerbia
  6. 6.Faculty of ScienceUniversity of KragujevacKragujevacSerbia

Personalised recommendations