Skip to main content
Log in

Heavy metal content in halophytic plants from inland and maritime saline areas

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

We investigated the concentration of Aluminium (Al), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Zinc (Zn) in the root and aboveground organs of four halophyte species (Salicornia europaea, Suaeda maritima, Salsola soda and Halimione portulacoides), as well as in the soil from maritime and inland saline areas. The aim of our research was to evaluate the capability of some halophyte species to absorb different heavy metals and to detect differentiation of heavy metal accumulation within populations from inland and maritime saline areas. Generally, the plant roots had significantly higher concentrations of metals when compared to stems and leaves. Zinc was the only metal with concentrations significantly higher in the leaves than in the root and stem. Populations from maritime saline areas had higher trace root and stem metal concentrations than populations from inland saline areas. Excepting zinc, populations from inland saline areas had higher heavy metal concentrations in the leaves. The factors that affected metal accumulation by halophytes included the percentage of salt in the soil. We also discuss the potential use of these halophytes in phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolff W.J., Van Eeden M.J., Lammens E., Primary production and import of particulate organic matter on a salt marsh in the Netherlands, Neth J Sea Res, 1989, 13, 242–255

    Article  Google Scholar 

  2. Doyle M.O., Otte M.L., Organism-induced accumulation of Fe, Zn and As in wetland soil, Environ Pollut, 1997, 96, 1–11

    Article  PubMed  CAS  Google Scholar 

  3. Orson R.A., Simpson R.J., Good R.E., A mechanism for the accumulation and retention of heavy metals in tidal freshwater marches of the upper Delaware River, Estuar Coast Shelf Sci, 1992, 34, 171–186

    Article  CAS  Google Scholar 

  4. Vinagre C., Cabral H.N., Caçador I., Influence of halophytes and metal contamination on salt marsh macro-benthic communities, Estuar Coast Shelf Sci, 2008, 76, 715–722

    Article  Google Scholar 

  5. Williams T.P., Bubb, J.M., Lester J.N., The occurrence and distribution of trace metals in halophytes, Chemosphere, 1994, 28, 1189–1199

    Article  CAS  Google Scholar 

  6. Flowers T.J., Hajibagheri M.A., Clipson N.J.W., Halophytes, Quart Rev Biol, 1986, 61, 313–337

    Article  Google Scholar 

  7. Sousa A.I., Caçador I., Lillebø A.I., Pardal M. A., Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites, Chemosphere, 2008, 70, 850–857

    Article  PubMed  CAS  Google Scholar 

  8. Caçador I., Vale C., Catarino F., Seasonal variation of Zn, Pb, Cu and Cd concentrations in the rootsediment system of Spartina maritime and Halimione portulacoides from Tagus estuary salt marshes, Mar Environ Res, 2000, 49, 279–290

    Article  PubMed  Google Scholar 

  9. Sundby B., Vale C., Caçador I., Catarino F., Madureira M.J., Caetano M., Metal-rich concretions on the roots of salt marsh plants: Mechanism and rate of formation, Limnol Oceanogr., 1998, 43, 245–252

    Article  CAS  Google Scholar 

  10. Weise P., Windham L., Burke D.J., Weis J.S., Release into the environment of metals by two vascular salt marsh plants, Mar Environ Res, 2002, 54, 325–329

    Article  Google Scholar 

  11. Windham L., Weis J.S., Weise P., Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alternifolia (cordgrass) and Phragmites australis (common reed), Mar Environ Res, 2003, 56, 63–72

    CAS  Google Scholar 

  12. Cardwell A.J., Hawker D.W., Greenway M., Metal accumulation in aquatic macrophytes from southeast Queensland, Australia, Chemosphere, 2002, 48, 653–663

    Article  PubMed  CAS  Google Scholar 

  13. Wozny A., Krzeslowska M., Plant cell response to Pb, Acta Soc Bot Pol, 1993, 62, 101–105

    CAS  Google Scholar 

  14. Baker A.J.M., Walker P.L., Ecophysiology of metal uptake by tolerant plants, In: Shaw A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects, 1st ed., Boca Raton Florida, CRC Press, 1990

    Google Scholar 

  15. Kastori R., Maksimović I., Plant Nutrition. Vojvodina Academy of Sciences and Art [Ishrana biljaka, Vojvođanska akademija nauka i umetnosti], Novi Sad, 2008 (in Serbian)

  16. Stoltz E., Greger M., Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environ Exper Bot, 2002, 47, 271–280

    Article  CAS  Google Scholar 

  17. Boularbah A., Schwartz C., Bitton G., Aboudrar W., Ouhammou A., Morel J.L., Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants, Chemosphere, 2006, 63, 811–817

    Article  PubMed  CAS  Google Scholar 

  18. Perronnet K., Schwartz C., Morel, J.L., Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil, Plant Soil, 2003, 249, 19–25

    Article  CAS  Google Scholar 

  19. Shu W.S., Yen Y.H., Lan C.Y., Zhangf Z.Q., Wong M.H., Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon, Environ Pollut, 2002, 120, 445–453

    Article  PubMed  CAS  Google Scholar 

  20. Pichtel J., Kuroiwa K., Sawyerr H.T., Distribution of Pb, Cd and Ba in soil and plants of two contaminated sites, Environ Pollut, 2000, 110, 171–178

    Article  PubMed  CAS  Google Scholar 

  21. Caçador I., Vale C., Salt marches, In: Prasad M.N.V. (Ed.), Metals in the Environment — Analyses by Biodiversity, Marcel Dekker Inc., Hyderbad, 2001

    Google Scholar 

  22. Yugoslav Society of Soil Science, Determination of total water soluble salts in water-saturated soil paste by electrical conductivity on the conductometer type, Handbook for soil analyses, Chemical methods of soil testing, Belgrade, 1966 (in Serbian)

    Google Scholar 

  23. Government of Republik of Serbia, Official Gazette of the Republic of Serbia, Issue No. 23/1994

  24. Agoramoorthy G., Chen F.A., Hsu M.J., Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India, Environ Pollut, 2008, 155, 320–326

    Article  PubMed  CAS  Google Scholar 

  25. Alloway B.J., Soil processes and the behavior of metals, In: Alloway B.J. (Ed.), Heavy Metals in the Soils, Blackie Academic and Professional, Glasgow, 1990

    Google Scholar 

  26. Škorić A., Filipovski G., Ćirić M., Classification of Yugoslavian soils, Sarajevo, Academy of Science and Art of Bosnia and Herzegovina, Special Issue, Book LXXVIII, 1985 (in Serbian)

  27. Fitzgerald E.J., Caffrey, J.M., Nesaratnam S.T., McLoughlin, P., Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland, Environ Pollut, 2003, 123, 67–74

    Article  PubMed  CAS  Google Scholar 

  28. Reboredo F., How differences in the field influence Cu, Fe and Zn uptake by Halimione portulacoides and Spartina maritime, Sci Total Environ, 1993, 133, 111–132

    Article  CAS  Google Scholar 

  29. Dunbabin J.S., Bowmer K.H., Potential use of constructed wetlands for treatment of industrial wastewaters containing metals, Sci Total Environ, 1992, 111, 151–168

    Article  CAS  Google Scholar 

  30. Gregory J., Taylor G.J., Crowder, A.A., Uptake and accumulation of heavy metals by Typha latifoila in wetlands of the Sudbury, Ontario region, Can J Bot, 1983, 61, 63–73

    Article  Google Scholar 

  31. Deng H., Ye Z.H., Wong M.H., Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China, Environ Pollut, 2004, 132, 29–40

    Article  PubMed  CAS  Google Scholar 

  32. Polić D., Luković J., Zorić L., Boža P., Merkulov Lj., Knežević A., Morpho anatomical differentiation of Suaeda maritima (L.) Dumort. 1827. (Chenopodiaceae) populations from inland and maritime saline area, Cent Eur J Biol, 2009, 4, 117–129

    Article  Google Scholar 

  33. Baker A.J.M., Accumulators and excludersstrategies in the response of plants to heavy metals, J Plant Nutr, 1981, 3, 643–654

    Article  CAS  Google Scholar 

  34. Brown S.L., Chaney R.L., Angle J.S., Baker A.J.M., Zinc and cadmium uptake by hyperaccumulator Thlaspi cearulescens grown in nutrient solution, Soil Sci. Soc. Am J., 1995, 59, 125–133

    Article  CAS  Google Scholar 

  35. Schwartz C., Gérard E., Perronet K., Morel J.L., Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site, Sci Total Environ, 2001, 279, 215–221

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz C., Echevarria G., Morel, J.L., Phytoextraction of cadmium with Thlaspi cearulescens, Plant Soil, 2003, 249, 27–35

    Article  CAS  Google Scholar 

  37. Baker A.J.M., Brooks R.R., Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry, Biorecovery, 1989, 1, 81–126

    CAS  Google Scholar 

  38. Duarte B., Delgado M., Caçador, I., The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoide, Chemosphere, 2007, 69, 836–840

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dubravka Milić.

About this article

Cite this article

Milić, D., Luković, J., Ninkov, J. et al. Heavy metal content in halophytic plants from inland and maritime saline areas. cent.eur.j.biol. 7, 307–317 (2012). https://doi.org/10.2478/s11535-012-0015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-012-0015-6

Keywords

Navigation