Central European Journal of Biology

, Volume 6, Issue 6, pp 887–892

Population genetics: the next stop for microbial ecologists?



Microbes play key roles in the functioning of the biosphere. Still, our knowledge about their total diversity is very limited. In particular, we lack a clear understanding of the evolutionary dynamics occurring within their populations (i.e. among members of the same biological species). Unlike animals and plants, microbes normally have huge population sizes, high reproductive rates and the potential for unrestricted dispersal. As a consequence, the knowledge of population genetics acquired from studying animals and plants cannot be applied without extensive testing to microbes. Next generation molecular tools, like High Throughput Sequencing (e.g. 454 and Illumina) coupled to Single Cell Genomics, now allow investigating microbial populations at a very fine scale. Such techniques have the potential to shed light on several ecological and evolutionary processes occurring within microbial populations that so far have remained hidden. Furthermore, they may facilitate the identification of microbial species. Eventually, we may find an answer to the question of whether microbes and multicellular organisms follow the same or different rules in their population diversification patterns.


Diversity Whole genome amplification Pyrosequencing Diversification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Green J. L., Bohannan B.J.M., Spatial scaling of microbial biodiversity, Trends Ecol Evol, 2006, 21, 501–507PubMedCrossRefGoogle Scholar
  2. [2]
    Falkowski P.G., Fenchel T., Delong E.F., The microbial engines that drive Earth’s biogeochemical cycles, Science, 2008, 320, 1034–1039PubMedCrossRefGoogle Scholar
  3. [3]
    Pedros-Alio C., Marine microbial diversity: can it be determined?, Trends Microbiol, 2006, 14, 257–263PubMedCrossRefGoogle Scholar
  4. [4]
    Futuyma D.J., Evolutionary Biology, Sinauer Associates, Inc., Sunderland, Massachusetts, 1998Google Scholar
  5. [5]
    Coyne J.A., Orr H.A., Speciation, Sinauer Associates, Inc., Sunderland, Massachusetts, 2004Google Scholar
  6. [6]
    Dolan J.R., An introduction to the biogeography of aquatic microbes, Aquat Microb Ecol, 2005, 41, 39–48CrossRefGoogle Scholar
  7. [7]
    Snoke M.S., Berendonk T.U., Barth D., Lynch M., Large global effective population sizes in Paramecium, Mol Biol Evol, 2006, 23, 2474–2479PubMedCrossRefGoogle Scholar
  8. [8]
    Newton R.J., Jones S.E., Helmus M.R., McMahon K.D., Phylogenetic ecology of the freshwater Actinobacteria acI Lineage, Appl Environ Microb, 2007, 73, 7169–7176CrossRefGoogle Scholar
  9. [9]
    Finlay B.J., Global dispersal of free-living microbial eukaryote species, Science, 2002, 296, 1061–1063PubMedCrossRefGoogle Scholar
  10. [10]
    Pace N.R., A molecular view of microbial diversity and the biosphere, Science, 1997, 276, 734–740PubMedCrossRefGoogle Scholar
  11. [11]
    Hughes Martiny J.B., Bohannan B.J.M., Brown J.H., Colwell R.K., Fuhrman J.A., Green J.L., et al., Microbial biogeography: putting microorganisms on the map, Nat Rev Microbiol, 2006, 4, 102–112CrossRefGoogle Scholar
  12. [12]
    Logares R., Does the global microbiota consist of a few cosmopolitan species?, Ecol Austral, 2006, 16, 85–90Google Scholar
  13. [13]
    Lopez-Garcia P., Moreira D., Tracking microbial biodiversity through molecular and genomic ecology, Res Microbiol, 2008, 159, 67–73PubMedCrossRefGoogle Scholar
  14. [14]
    Medlin L.K., Lange M., Nothig E.M., Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton, Antarct Sci, 2000, 12, 325–333CrossRefGoogle Scholar
  15. [15]
    Rynearson T.A., Armbrust E.V., DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii, Limnol Oceanogr, 2000, 45, 1329–1340CrossRefGoogle Scholar
  16. [16]
    Shankle A.M., Mayali X., Franks P.J.S., Temporal patterns in population genetic diversity of Prorocentrum micans (Dinophyceae), J Phycol, 2004, 40, 239–247CrossRefGoogle Scholar
  17. [17]
    Evans K.M., Kuhn S.F., Hayes P.K., High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations, J Phycol, 2005, 41, 506–514CrossRefGoogle Scholar
  18. [18]
    Iglesias-Rodriguez M.D., Schofield O.M., Batley J., Medlin L.K., Hayes P.K., Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae): The use of microsatellite analysis in marine phytoplankton population studies, J Phycol, 2006, 42, 526–536CrossRefGoogle Scholar
  19. [19]
    Nagai S., Lian C., Yamaguchi S., Hamaguchi M., Matsuyama Y., Itakura S., et al., Microsatellite markers reveal population genetic structure of the toxic dinoflagellate Alexandrium tamarense (Dinophyceae) in Japanese coastal waters, J Phycol, 2007, 43, 43–54CrossRefGoogle Scholar
  20. [20]
    Logares R., Boltovskoy A., Bensch S., Laybourn-Parry J., Rengefors K., Genetic Diversity Patterns in Five Protist Species Occurring in Lakes, Protist, 2009, 160, 301–317PubMedCrossRefGoogle Scholar
  21. [21]
    Mes T.H.M., Microbial diversity — insights from population genetics, Environ Microbiol, 2008, 10, 251–264PubMedGoogle Scholar
  22. [22]
    Rynearson T.A., Armbrust E.V., Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae), J Phycol, 2004, 40, 34–43CrossRefGoogle Scholar
  23. [23]
    Lilly E.L., Halanych K.M., Anderson D.M., Phylogeny, biogeography, and species boundaries within the Alexandrium minutum group, Harmful Algae, 2005, 4, 1004–1020CrossRefGoogle Scholar
  24. [24]
    Harnstrom K., Ellegaard M., Andersen T.J., Godhe A., Hundred years of genetic structure in a sediment revived diatom population, Proc Natl Acad Sci USA, 2011, 108, 4252–4257PubMedCrossRefGoogle Scholar
  25. [25]
    Wilson A.E., Sarnelle O., Neilan B.A., Salmon T.P., Gehringer M.M., Hay M.E., Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: Implications for harmful algal blooms, Appl Environ Microb, 2005, 71, 6126–6133CrossRefGoogle Scholar
  26. [26]
    Hunt D.E., David L.A., Gevers D., Preheim S.P., Alm E.J., Polz M.F., Resource partitioning and sympatric differentiation among closely related bacterioplankton, Science, 2008, 320, 1081–1085PubMedCrossRefGoogle Scholar
  27. [27]
    Logares R., Rengefors K., Kremp A., Shalchian-Tabrizi K., Boltovskoy A., Tengs T., et al., Phenotypically different microalgal morphospecies with identical ribosomal DNA: A case of rapid adaptive evolution?, Microb Ecol, 2007, 53, 549–561PubMedCrossRefGoogle Scholar
  28. [28]
    Logares R., Daugbjerg N., Boltovskoy A., Kremp A., Laybourn-Parry J., Rengefors K., Recent evolutionary diversification of a protist lineage, Environ Microbiol, 2008, 10, 1231–1243PubMedCrossRefGoogle Scholar
  29. [29]
    Avise J.C., Phylogeography: the history and formation of species, Harvard University Press, Cambridge, Massachusetts, 2000Google Scholar
  30. [30]
    Massana R., Terrado R., Forn I., Lovejoy C., Pedros-Alio C., Distribution and abundance of uncultured heterotrophic flagellates in the world oceans, Environ Microbiol, 2006, 8, 1515–1522PubMedCrossRefGoogle Scholar
  31. [31]
    Salcher M. M., Pernthaler J., Posch T., Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12), ISME J, 2011, 5, 1242–1252PubMedCrossRefGoogle Scholar
  32. [32]
    Logares R., Brate J., Heinrich F., Shalchian-Tabrizi K., Bertilsson S., Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11), Mol Biol Evol, 2010, 27, 347–357PubMedCrossRefGoogle Scholar
  33. [33]
    Binga E.K., Lasken R.S., Neufeld J.D., Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology, ISME J, 2008, 2, 233–241PubMedCrossRefGoogle Scholar
  34. [34]
    Marcy Y., Ishoey T., Lasken R.S., Stockwell T.B., Walenz B.P., Halpern A.L., et al., Nanoliter reactors improve multiple displacement amplification of genomes from single cells, PLOS GENET, 2007, 3, e155CrossRefGoogle Scholar
  35. [35]
    Stepanauskas R., Sieracki M.E., Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time, Proc Natl Acad Sci USA, 2007, 104, 9052–9057PubMedCrossRefGoogle Scholar
  36. [36]
    Pinard R., de Winter A., Sarkis G.J., Gerstein M.B., Tartaro K.R., Plant R.N., et al., Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing, Bmc Genomics, 2006, 7, 216PubMedCrossRefGoogle Scholar
  37. [37]
    Spits C., Le Caignec C., De Rycke M., Van Haute L., Van Steirteghem A., Liebaers I., et al., Optimization and evaluation of single-cell wholegenome multiple displacement amplification, Hum Mutat, 2006, 27, 496–503PubMedCrossRefGoogle Scholar
  38. [38]
    Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., et al., Phylogenetic species recognition and species concepts in fungi, Fungal Genet Biol, 2000, 31, 21–32PubMedCrossRefGoogle Scholar
  39. [39]
    Coleman A.W., Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide, Mol Phylogenet Evol, 2009, 50, 197–203PubMedCrossRefGoogle Scholar
  40. [40]
    Mayr E., Systematics and the Origin of Species, Columbia University Press, New York, 1942Google Scholar
  41. [41]
    Ronaghi M., Uhlen M., Nyren P., A sequencing method based on real-time pyrophosphate, Science, 1998, 281, 363–365PubMedCrossRefGoogle Scholar
  42. [42]
    Trombetti G.A., Bonnal R.J.P., Rizzi E., De Bellis G., Milanesi L., Data handling strategies for high throughput pyrosequencers, Bmc Bioinformatics, 2007, 8, S1–22CrossRefGoogle Scholar
  43. [43]
    Glenn T.C., Field guide to next-generation DNA sequencers, Mol Ecol Resour, 2011, 11, 759–769PubMedCrossRefGoogle Scholar
  44. [44]
    Yoon H.S., Price D.C., Stepanauskas R., Rajah V.D., Sieraki M.E., Wilson W.H., et al., Single-Cell genomics reveals organismal interactions in uncultivated marine protists, Science, 2011, 332, 714–717PubMedCrossRefGoogle Scholar
  45. [45]
    Dupont C.L., Chappell D., Logares R., Vila-Costa M., A hitchhiker’s guide to the new molecular toolbox for ecologists, In: P. Kemp (Ed.), Eco-DAS VIII Symposium Proceedings (11–16 October 2008, Hawaii, USA), ASLO, 2010, 17–29Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Institute of Marine SciencesICM, CMIMA, CSICBarcelonaSpain

Personalised recommendations