Advertisement

Central European Journal of Biology

, Volume 6, Issue 3, pp 397–404 | Cite as

Biological activity of new flavonoid from Hieracium pilosella L.

  • Monika Gawrońska-GrzywaczEmail author
  • Tadeusz Krzaczek
  • Renata Nowak
  • Renata Los
  • Anna Malm
  • Małgorzata Cyranka
  • Wojciech Rzeski
Research Article
  • 115 Downloads

Abstract

Hieracium pilosella L. (Asteraceae) is a well-known plant used in ethno-medicine as its inflorescences are particularly rich in beneficial polyphenolics. This research aimed to elucidate the structure of a new flavone glycoside isolated from the inflorescences of Hieracium pilosella and evaluate its antioxidant, antimicrobial and antiproliferative activities. The chromatographic methods were successfully applied to isolate the new flavonoid. Its structure was determined by subsequent UV, NMR and MS experiments and identified as isoetin 4′-O-β-D-glucopyranoside. Free radical scavenging capacity was examined by measuring the scavenging activity of the new isoetin derivative on 2,2-diphenyl-1-picrylhydrazyl (DPPH). The compound was also screened for spectrum of antimicrobial activity using the agar well diffusion method. Minimum inhibitory concentration (MIC) for Pseudomonas aeruginosa ATCC 9027 was performed by the micro-dilution broth method. The antiproliferative effect of tested glycoside was assessed in two human tumor cell lines derived from lung (A549) and colon (HT-29) carcinoma and cell proliferation was determined by means of MTT method. The tested compound showed high antiradical activity, reducing the DPPH? with EC50 7.9 μM (3.7 µg/ml) and exhibited narrow antimicrobial spectrum among tested microorganisms. The compound was active against Pseudomonas aeruginosa ATCC 9027 (MIC 125 μg/ml) which is prone to causing infections that are difficult to treat due to it developing extremely rapid antibiotic resistance. In the antiproliferative studies, cell proliferation of the colon (HT-29) carcinoma cell line was significantly decreased after exposure to the compound. The results indicate that isoetin 4′-O-β-D-glucopyranoside possesses antioxidant capacity and very promising antibacterial activity and could have uses as an effective antipseudomonal agent as well a antiproliferative agent.

Keywords

Hieracium pilosella L. Asteraceae Isoetin 4′-O-β-D-glucopyranoside Antiradical activity DPPH radical Antibacterial activity Pseudomonas aeruginosa Antiproliferative activity HT-29 cell culture MTT method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lakić N.S., Mimica-Dukić N.M., Isak J.M., Božin B.N., Antioxidant properties of Galium verum L. (Rubiaceae) extracts, Cent. Eur. J. Biol., 2010, 5, 331–337CrossRefGoogle Scholar
  2. [2]
    Harborne J.B., The Flavonoids: Advances in research since 1986, Chapman & Hall, London, 1999Google Scholar
  3. [3]
    Bishop G.F., Davy A.J., Biological flora of the British Isles. Hieracium pilosella L. (Pilosella officinarum F. Schultz & Schultz-Bip.), J. Ecol., 1994, 82, 195–210CrossRefGoogle Scholar
  4. [4]
    Beaux D., Fleurentin J., Mortier F., Effect of extracts of Ortosiphon stamineus Benth, Hieracium pilosella L., Sambucus nigra L. and Arctostaphylos uva-ursi (L.) spreng. in Rats, Phytother. Res., 1999, 13, 222–225PubMedCrossRefGoogle Scholar
  5. [5]
    Bolle P., Bello U., Faccendini P., Martinoli L., Tita B., Hieracium pilosella L.: pharmacological effect of ethanol extract, Pharmacol. Res., 1993, 27, 29–30CrossRefGoogle Scholar
  6. [6]
    Goetz P., Wuyts D., Phytothérapie et nutrithérapie de l’hypertension artérielle (Phytotherapy and nutritherapy of hypertension), Phytothérapie, 2008, 6, 247–252, (in French)CrossRefGoogle Scholar
  7. [7]
    Moro C.O., Basile G., Obesity and medicinal plants, Fitoterapia, 2000, 71, S73–S82PubMedCrossRefGoogle Scholar
  8. [8]
    Dombrowicz E., Šwiątek L., Kopycki W., Phenolic acids in Inflorescentia Helichrysi and Herba Hieracii pilosellae, Pharmazie, 1992, 47, 469–470Google Scholar
  9. [9]
    Stanojević L.P., Stanković M.Z., Nikolić V.D., Nikolić L.B., Anti-oxidative and antimicrobial activities of Hieracium pilosella L. extracts, J. Serb. Chem. Soc., 2008, 73, 531–540CrossRefGoogle Scholar
  10. [10]
    Barbour E.K., Sharif M.A., Sagherian V.K., Habre A.N., Talhouk R.S., Talhouk S.N., Screening of selected plants of Lebanon for antimicrobial activity, J. Ethnopharmacol., 2004, 93, 1–7PubMedCrossRefGoogle Scholar
  11. [11]
    Bedoya L.M., Sanchez-Palomino S., Abad M.J., Bermejo P., Alcami J., Anti-HIV activity of medicinal plant extracts, J. Ethnopharmacol., 2001, 77, 113–116PubMedCrossRefGoogle Scholar
  12. [12]
    Gawrońska-Grzywacz M., Krzaczek T., Flavonoids and coumarins from Hieracium pilosella L. (Asteraceae), Acta Soc. Bot. Pol., 2009, 78, 189–195Google Scholar
  13. [13]
    Gawrońska-Grzywacz M., Krzaczek T., Free and bound phenolic acids in inflorescences and rhizomes with roots of Hieracium pilosella L. (Asteraceae), Acta Soc. Bot. Pol., 2006, 75, 215–218Google Scholar
  14. [14]
    Zidorn C., Gottschlich G., Stuppner H., Chemosystematic investigations on phenolics from flowerheads of Central European taxa of Hieracium sensu lato (Asteraceae), Plant Syst. Evol., 2002, 231, 39–58CrossRefGoogle Scholar
  15. [15]
    Gluchoff-Fiasson K., Favre-Bonvin J., Fiasson J.L., Glycosides and acylated glycosides of isoetin from European species of Hypochoeris, Phytochemistry, 1991, 30, 1673–1675CrossRefGoogle Scholar
  16. [16]
    Harborne J.B., Revised structures for three isoetin glycosides, yellow flower pigments in Heywoodiella oligocephala, Phytochemistry, 1991, 30, 1677–1678CrossRefGoogle Scholar
  17. [17]
    Marco J.A., Barbera O., Rodriguez S., Domingo C., Adell J., Flavonoids and other phenolics from Artemisia hispanica, Phytochemistry, 1988, 27, 3155–3159CrossRefGoogle Scholar
  18. [18]
    Pauli G.F., Junior P., Phenolic glycosides from Adonis aleppica, Phytochemistry, 1995, 38, 1245–1250CrossRefGoogle Scholar
  19. [19]
    Shi S., Zhang Y., Zhao Y., Huang K., Preparative isolation and purification of three flavonoid glycosides from Taraxacum mongolicum by highspeed counter-current chromatography, J. Sep. Sci., 2008, 31, 683–688PubMedCrossRefGoogle Scholar
  20. [20]
    Shi S., Zhao Y., Zhou H., Zhang Y., Jiang X., Huang K., Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography-diode array detection-radicalscavenging detection-electrospray ionization mass spectrometry and nuclear magnetic resonance experiments, J. Chromatogr. A, 2008, 1209, 145–152PubMedCrossRefGoogle Scholar
  21. [21]
    Rahman M.A.A., Moon S.S., Isoetin 5′-Methyl Ether, A Cytotoxic Flavone from Trichosanthes kirilowii, Bull. Korean Chem. Soc., 2007, 28, 1261–1264CrossRefGoogle Scholar
  22. [22]
    Mabry T.J., Markham K.R., Thomas M.B., The Systematic Identification of Flavonoids, Springer-Verlag, Berlin-Heidelberg-New York, 1970Google Scholar
  23. [23]
    Brand-Williams W., Cuvelier M.E., Berset C., Use of free radical method to evaluate antioxidant activity, Lebensm. Wiss. Technol., 1995, 28, 25–30Google Scholar
  24. [24]
    Nowak R., Gawlik-Dziki U., Polyphenols of Rosa L. leaves extracts and their radical scavenging activity, Z. Naturforsch. C., 2007, 62, 32–38PubMedGoogle Scholar
  25. [25]
    Juszczak M., Matysiak J., Brzana W., Niewiadomy A., Rzeski W., Evaluation of antiproliferative activity of 2-(monohalogenphenylamino)-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles, Arzneimittelforschung, 2008, 58, 353–357PubMedGoogle Scholar
  26. [26]
    Harborne J.B., Williams C.A., Advances in flavonoid research since 1992, Phytochemistry, 2000, 55, 481–504PubMedCrossRefGoogle Scholar
  27. [27]
    Rice-Evans C.A., Miller N.J., Paganga G., Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radic. Biol. Med., 1996, 20, 933–956PubMedCrossRefGoogle Scholar
  28. [28]
    Lambert R.J.W., Pearson J., Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values, J. Appl. Microbiol., 2008, 8, 784–790Google Scholar
  29. [29]
    Fluit A.C., Verhoef J., Schmitz F.J., Antimicrobial resistance in European isolates of Pseudomonas aeruginosa, European SENTRY Participants, Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19, 370–374PubMedCrossRefGoogle Scholar
  30. [30]
    Karlowsky J.A., Draghi D.C., Jones M.E., Thornsberry C., Friedland I.R., Saham D.F., Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumanii from hospitalized patients in the United States, 1998 to 2001, Antimicrob. Agents Chemother., 2003, 47, 1681–1688PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Monika Gawrońska-Grzywacz
    • 1
    Email author
  • Tadeusz Krzaczek
    • 2
  • Renata Nowak
    • 2
  • Renata Los
    • 3
  • Anna Malm
    • 3
  • Małgorzata Cyranka
    • 4
  • Wojciech Rzeski
    • 4
    • 5
  1. 1.Department of ToxicologyMedical University of LublinLublinPoland
  2. 2.Department of Pharmaceutical BotanyMedical University of LublinLublinPoland
  3. 3.Department of Pharmaceutical MicrobiologyMedical University of LublinLublinPoland
  4. 4.Department of Virology and Immunology, Institute of Microbiology and BiotechnologyMaria Curie-Skłodowska UniversityLublinPoland
  5. 5.Department of Medical BiologyInstitute of Agricultural MedicineLublinPoland

Personalised recommendations