Central European Journal of Biology

, Volume 6, Issue 2, pp 167–175 | Cite as

Expression of human melanocortin 4 receptor in Saccharomyces cerevisiae

  • Vita IgnatovicaEmail author
  • Ramona Petrovska
  • Davids Fridmanis
  • Janis Klovins
Research Article


The melanocortin 4 receptor (MC4R) is involved in the regulation of energy homeostasis and is known as one of the major hypothalamic regulators of food intake. Several studies have shown that replacement of aspartic acid at position 126 of the MC4R abolishes the ligand binding. We used the modified yeast Saccharomyces cerevisiae strain MMY28 to functionally express the MC4R and characterise the importance of this amino acid for ligand based activation of the receptor. The efficiency of the functional expression system was estimated by activation with αMSH, ACTH and THIQ and compared with cAMP response in mammalian cells. We generated the library of MC4R mutants randomised at the amino acid position 126. Recombinant MC4R clones were screened for the αMSH induced activity in yeast. From 9 different amino acids obtained only the natural aspartic acid displayed the ligand dependent activity of MC4R. The MC4R variants with glutamic acid and leucine at position 126, however, displayed higher background activity than other amino acid substitutions. The results suggest that the yeast expression system is suitable for screening of the MC4R receptor ligands and that the substitution of aspartic acid at position 126 of MC4R by different amino acids functionally inactivates the receptor.


G-protein coupled receptors Saccharomyces cerevisiae melanocortin receptors functional screens 



adrenocorticotropin hormone




G protein-coupled receptors


melanocortin 4 receptor






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chhajlani V., Muceniece R., Wikberg J.E., Molecular cloning of a novel human melanocortin receptor, Biochem. Biophys. Res. Commun., 1993, 195, 866–873CrossRefPubMedGoogle Scholar
  2. [2]
    Gantz I., Konda Y., Tashiro T., Shimoto Y., Miwa H., Munzert G., et al. Molecular cloning of a novel melanocortin receptor, J. Biol. Chem., 1993, 268, 8246–8250PubMedGoogle Scholar
  3. [3]
    Gantz I., Miwa H., Konda Y., Shimoto Y., Tashiro T., Watson S.J., et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor, J. Biol. Chem., 1993, 268, 15174–15179PubMedGoogle Scholar
  4. [4]
    Mountjoy K.G., Robbins L.S., Mortrud M.T., Cone R.D., The cloning of a family of genes that encode the melanocortin receptors, Science, 1992, 257, 1248–1251CrossRefPubMedGoogle Scholar
  5. [5]
    Crine P., Gossard F., Seidah N.G., Blanchette L., Lis M., Chretien M., Concomitant synthesis of betaendorphin and alpha-melanotropin from two forms of pro-opiomelanocortin in the rat pars intermedia, Proc. Natl. Acad. Sci. USA, 1979, 76, 5085–5089CrossRefPubMedGoogle Scholar
  6. [6]
    Hadley M.E., Haskell-Luevano C., The proopiomelanocortin system, Ann. N Y Acad. Sci., 1999, 885, 1–21CrossRefPubMedGoogle Scholar
  7. [7]
    Mains R.E., Eipper B.A., Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells, J. Biol. Chem., 1979, 254, 7885–7894PubMedGoogle Scholar
  8. [8]
    Gantz I., Fong T.M., The melanocortin system, Am. J. Physiol. Endocrinol. Metab., 2003, 284, E468–E474PubMedGoogle Scholar
  9. [9]
    Gantz I., Shimoto Y., Konda Y., Miwa H., Dickinson C.J., Yamada T., Molecular cloning, expression, and characterization of a fifth melanocortin receptor, Biochem. Biophys. Res. Commun., 1994, 200, 1214–1220CrossRefPubMedGoogle Scholar
  10. [10]
    Mountjoy K.G., Mortrud M.T., Low M.J., Simerly R.B., Cone R.D., Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain, Mol. Endocrinol., 1994, 8, 1298–1308CrossRefPubMedGoogle Scholar
  11. [11]
    Pritchard L.E., Turnbull A.V., White A., Proopiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity, J. Endocrinol., 2002, 172, 411–421CrossRefPubMedGoogle Scholar
  12. [12]
    Chhajlani V., Distribution of cDNA for melanocortin receptor subtypes in human tissues, Biochem. Mol. Biol. Int., 1996, 38, 73–80PubMedGoogle Scholar
  13. [13]
    Konturek P.C., Konturek J.W., Czesnikiewicz-Guzik M., Brzozowski T., Sito E., Konturek S.J., Neurohormonal control of food intake: basic mechanisms and clinical implications, J. Physiol. Pharmacol., 2005, 56, 5–25Google Scholar
  14. [14]
    Williams G., Bing C., Cai X.J., Harrold J.A., King P.J., Liu X.H., The hypothalamus and the control of energy homeostasis: different circuits, different purposes, Physiol. Behav., 2001, 74, 683–701CrossRefPubMedGoogle Scholar
  15. [15]
    Huszar D., Lynch C.A., Fairchild-Huntress V., Dunmore J.H., Fang Q., Berkemeier L.R., et al., Targeted disruption of the melanocortin-4 receptor results in obesity in mice, Cell, 1997, 88, 131–141CrossRefPubMedGoogle Scholar
  16. [16]
    Butler A.A., The melanocortin system and energy balance, Peptides, 2006, 27, 281–290CrossRefPubMedGoogle Scholar
  17. [17]
    Chen A.S., Marsh D.J., Trumbauer M.E., Frazier E.G., Guan X.M., Yu H., et al., Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass, Nat. Genet., 2000, 26, 97–102CrossRefPubMedGoogle Scholar
  18. [18]
    Fleck B.A., Chen C., Yang W., Huntley R., Markison S., Nickolls S.A., et al., Molecular interactions of nonpeptide agonists and antagonists with the melanocortin-4 receptor, Biochemistry, 2005, 44, 14494–14508CrossRefPubMedGoogle Scholar
  19. [19]
    Hogan K., Peluso S., Gould S., Parsons I., Ryan D., Wu L., et al. Mapping the binding site of melanocortin 4 receptor agonists: a hydrophobic pocket formed by I3.28(125), I3.32(129), and I7.42(291) is critical for receptor activation, J. Med. Chem., 2006, 49, 911–922CrossRefPubMedGoogle Scholar
  20. [20]
    Nickolls S.A., Cismowski M.I., Wang X., Wolff M., Conlon P.J., Maki R.A., Molecular determinants of melanocortin 4 receptor ligand binding and MC4/MC3 receptor selectivity, J. Pharmacol. Exp. Ther., 2003, 304, 1217–1227CrossRefPubMedGoogle Scholar
  21. [21]
    Nickolls S.A., Fleck B., Hoare S.R., Maki R.A., Functional selectivity of melanocortin 4 receptor peptide and nonpeptide agonists: evidence for ligand-specific conformational states, J. Pharmacol. Exp. Ther., 2005, 313, 1281–1288CrossRefPubMedGoogle Scholar
  22. [22]
    Oosterom J., Nijenhuis W.A., Schaaper W.M., Slootstra J., Meloen R.H., Gispen W.H., et al., Conformation of the core sequence in melanocortin peptides directs selectivity for the melanocortin MC3 and MC4 receptors, J. Biol. Chem., 1999, 274, 16853–16860CrossRefPubMedGoogle Scholar
  23. [23]
    Wilczynski A., Wang X.S., Joseph C.G., Xiang Z., Bauzo R.M., Scott J.W., et al., Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands, J. Med. Chem., 2004, 47, 2194–2207CrossRefPubMedGoogle Scholar
  24. [24]
    Yang Y.K., Fong T.M., Dickinson C.J., Mao C., Li J.Y., Tota M.R., et al., Molecular determinants of ligand binding to the human melanocortin-4 receptor, Biochemistry, 2000, 39, 14900–14911CrossRefPubMedGoogle Scholar
  25. [25]
    Haskell-Luevano C., Cone R.D., Monck E.K., Wan Y.P., Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants, Biochemistry, 2001, 40, 6164–6179CrossRefPubMedGoogle Scholar
  26. [26]
    Baranski T.J., Herzmark P., Lichtarge O., Gerber B.O., Trueheart J., Meng E.C., et al., C5a receptor activation. Genetic identification of critical residues in four transmembrane helices, J. Biol. Chem., 1999, 274, 15757–15765CrossRefPubMedGoogle Scholar
  27. [27]
    Beukers M.W., van Oppenraaij J., van der Hoorn P.P., Blad C.C., den Dulk H., Brouwer J., et al., Random mutagenesis of the human adenosine A2B receptor followed by growth selection in yeast. Identification of constitutively active and gain of function mutations, Mol. Pharmacol., 2004, 65, 702–710CrossRefPubMedGoogle Scholar
  28. [28]
    Erlenbach I., Kostenis E., Schmidt C., Serradeil-Le Gal C., Raufaste D., Dumont M.E., et al., Single amino acid substitutions and deletions that alter the G protein coupling properties of the V2 vasopressin receptor identified in yeast by receptor random mutagenesis, J. Biol. Chem., 2001, 276, 29382–29392CrossRefPubMedGoogle Scholar
  29. [29]
    Miret J.J., Rakhilina L., Silverman L., Oehlen B., Functional expression of heteromeric calcitonin gene-related peptide and adrenomedullin receptors in yeast, J. Biol. Chem., 2002, 277, 6881–6887CrossRefPubMedGoogle Scholar
  30. [30]
    Pausch M.H., Lai M., Tseng E., Paulsen J., Bates B., Kwak S., Functional expression of human and mouse P2Y12 receptors in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 2004, 324, 171–177CrossRefPubMedGoogle Scholar
  31. [31]
    Schmidt C., Li B., Bloodworth L., Erlenbach I., Zeng F.Y., Wess J., Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that “silence” a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling, J. Biol. Chem., 2003, 278, 30248–30260CrossRefPubMedGoogle Scholar
  32. [32]
    Beukers M.W., Ijzerman A.P., Techniques: how to boost GPCR mutagenesis studies using yeast, Trends Pharmacol. Sci., 2005, 26, 533–539CrossRefPubMedGoogle Scholar
  33. [33]
    Pausch M.H., G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery, Trends Biotechnol., 1997, 15, 487–494CrossRefPubMedGoogle Scholar
  34. [34]
    Mumberg D., Muller R., Funk M., Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression, Nucl. Acids Res., 1994, 22, 5767–5768CrossRefPubMedGoogle Scholar
  35. [35]
    Adan R.A., Szklarczyk A.W., Oosterom J., Brakkee J.H., Nijenhuis W.A., Schaaper W.M., et al., Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat, Eur. J. Pharmacol., 1999, 378, 249–258CrossRefPubMedGoogle Scholar
  36. [36]
    Bosch M.P., Campos F., Niubo I., Rosell G., Diaz J.L., Brea J., et al., Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor, J. Med. Chem., 2004, 47, 4041–4053CrossRefPubMedGoogle Scholar
  37. [37]
    Sebhat I.K., Martin W.J., Ye Z., Barakat K., Mosley R.T., Johnston D.B., et al., Design and pharmacology of N-[(3R)-1,2,3,4-tetrahydroisoquinolinium-3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl)piperidin-1-yl]-2-oxoethylamine (1), a potent, selective, melanocortin subtype-4 receptor agonist, J. Med. Chem., 2002, 45, 4589–4593CrossRefPubMedGoogle Scholar
  38. [38]
    Geva A., Lassere T.B., Lichtarge O., Pollitt S.K., Baranski T.J., Genetic mapping of the human C5a receptor. Identification of transmembrane amino acids critical for receptor function, J. Biol. Chem., 2000, 275, 35393–35401CrossRefPubMedGoogle Scholar
  39. [39]
    Armbruster B.N., Li X., Pausch M.H., Herlitze S., Roth B.L., Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand, Proc. Natl. Acad. Sci. USA, 2007, 104, 5163–5168CrossRefPubMedGoogle Scholar
  40. [40]
    Srinivasan S., Lubrano-Berthelier C., Govaerts C., Picard F., Santiago P., Conklin B.R., et al., Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans, J. Clin. Invest., 2004, 114, 1158–1164PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Vita Ignatovica
    • 1
    Email author
  • Ramona Petrovska
    • 1
  • Davids Fridmanis
    • 1
  • Janis Klovins
    • 1
  1. 1.Latvian Biomedical Research and Study CentreRigaLatvia

Personalised recommendations