Central European Journal of Biology

, Volume 4, Issue 4, pp 482–492 | Cite as

Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals

  • Ivana Teodorovic
  • Ivana Planojevic
  • Petar Knezevic
  • Sonja Radak
  • Irena Nemet
Research Article


The objectives of this study were to evaluate the sensitivity of two bacterial tests commonly used in metal toxicity screening — the Vibrio fischeri bioluminescence inhibition test and the Pseudomonas putida growth inhibition test — in comparison to the standard acute Daphnia magna test, and to estimate applicability of the selected methods to the toxicity testing of environmental samples. The D. magna acute test proved to be more sensitive to cadmium (Cd), zinc (Zn) and manganese (Mn) than the two bacterial assays, whereas P. putida seems to be the most sensitive species to lead (Pb). Manganese appears to be slightly toxic to D. magna and non-toxic to the two selected bacteria. This leads to the conclusion that even in regions with high background concentrations, manganese would not act as a confounding factor. Low sensitivity of V. fischeri to heavy metals questions its applicability as the first screening method in assessing various environmental samples. Therefore, it is not advisable to replace D. magna with bacterial species for metal screening tests. P. putida, V. fischeri and/or other bacterial tests should rather be applied in a complex battery of ecotoxicological tests, as their tolerance to heavy metals can unravel other potentially present toxic substances and mixtures, undetectable by metal-sensitive species.


Toxicity tests Ecotoxicity Heavy metals Daphnia magna Vibrio fischeri Pseudomonas putida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Girotti S., Ferri E.N., Fumo M.G., Maiolini E., Monitoring of environmental pollutants by bioluminescent bacteria, Anal. Chim. Acta, 2008, 608, 2–29CrossRefPubMedGoogle Scholar
  2. [2]
    Davoren M, Shuilleabhain S.N., O’Halloran J., Hartl M.G.J., Sheehan D., O’Brien N.M., et al., A Test Battery Approach for the Ecotoxicological Evaluation of Estuarine Sediments, Ecotoxicology, 2005, 14, 741–755CrossRefPubMedGoogle Scholar
  3. [3]
    Pandard P., Devillers J., Charissou A., Poulsen V., Jourdan M., Ferard J., et al., Selecting a battery of bioasseys for ecotoxicological characterisation of wastes, Sci. Total Environ., 2006, 363, 114–125CrossRefPubMedGoogle Scholar
  4. [4]
    Coleman R.N., Qureshi A.A., Microtox and Spirillum volutans Tests for Assessing Toxicity of Environmental Samples, Bull. Environ. Contam. Toxicol., 1985, 35, 443–451CrossRefPubMedGoogle Scholar
  5. [5]
    Araujo C.V.M., Nascimento R.B., Oliveira C.A., Strotmann U.J., Da Silva E.M., The use of Microtox to assess toxicity removal of industrial effluents from the industrial district of Camacari (BA, Brazil), Chemosphere, 2005, 58, 1277–1281CrossRefPubMedGoogle Scholar
  6. [6]
    Zgajnar Gotvajna A., Tisler T., Zagorc-Koncan J., Comparison of different treatment strategies for industrial landfill leachate, J. Hazar. Mater., 2009, 162, 1446–1456CrossRefGoogle Scholar
  7. [7]
    Chang J.C., Taylor P.B., Leach F.R., Use of the Microtox Assay System for Environmental Samples, Bull. Environ. Contam. Toxicol., 1981, 26, 150–156CrossRefPubMedGoogle Scholar
  8. [8]
    Cheung Y.H, Neller A., Chu K.H., Tam N.F.Y., Wong C.K., Wong Y.S., et al., Assessment of Sediment Toxicity Using Different Trophic Organisms, Arch. Environ. Con. Tox., 1997, 32, 260–267CrossRefGoogle Scholar
  9. [9]
    Ingersoll C.G., MacDonald D.D., Brumbaugh W.G., Johnson B.T., Kemble N.E., Kunz J.L., et al., Toxicity Assessment of Sediments from the Grand Calumet River and Indiana Harbor Canal in Northwestern Indiana, USA, Arch. Environ. Con. Tox., 2002, 43, 156–167CrossRefGoogle Scholar
  10. [10]
    Eisman M.P., Landon-Arnold S., Swindoll C.M., Determination of Petroleum Hydrocarbon Toxicity with Microtox, Bull. Environ. Contam. Toxicol., 1991, 47, 811–816CrossRefPubMedGoogle Scholar
  11. [11]
    Sweet L.I., Meier P.G., Lethal and Sublethal Effects of Azulene and Longifolene to Microtox®, Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas, Bull. Environ. Contam. Toxicol., 1997, 58, 268–274CrossRefPubMedGoogle Scholar
  12. [12]
    Bois F., Vaillant M., Vasseur P., Multiple Regression Analysis of Toxic Interactions: Application to the Microtox Test and General Comments, Bull. Environ. Contam. Toxicol., 1986, 36, 707–714CrossRefPubMedGoogle Scholar
  13. [13]
    Altenburger R., Backhause T., Boedeker W., Faust M., Scholze M., Grimme L.H., Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals, Environ. Toxicol. Chem., 2000, 19, 2341–2347CrossRefGoogle Scholar
  14. [14]
    Backhause T., Altenburger R., Boedeker W., Faust M., Scholze M., Grimme L.H., Predictability of the toxicity of a multiple mixtures of dissimilarly acting chemicals to Vibrio fischeri, Environ. Toxicol. Chem., 2000, 19, 2348–2356CrossRefGoogle Scholar
  15. [15]
    Fulladosa E., Murat J.C., Villaescusa I., Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target, Chemosphere, 2005, 58, 551–557CrossRefPubMedGoogle Scholar
  16. [16]
    Fulladosa E, Murat J.C., Martınez M., Villaescusa J., Patterns of metals and arsenic poisoning in Vibrio fischeri bacteria, Chemosphere, 2005, 60, 43–48CrossRefPubMedGoogle Scholar
  17. [17]
    Dutka B.J., Kwan K.K., Comparison of Three Microbial Toxicity Screening Tests with the Microtox Test, Bull. Environ. Contam Toxicol., 1981, 27, 753–757CrossRefPubMedGoogle Scholar
  18. [18]
    ISO 10712:1995, Water quality — Pseudomonas putida growth inhibition test (Pseudomonas cell multiplication inhibition test), International Organisation for standardisation, Geneve, Switzerland, 1995Google Scholar
  19. [19]
    Schmitz R.P.H., Eisentrager A., Dott W., Miniaturized kinetic growth inhibition assays with Vibrio fischeri and Pseudomonas putida (application, validation and comparison), J. Microbiol. Met., 1998, 31, 159–166CrossRefGoogle Scholar
  20. [20]
    Sutterlin H., Alexy R., Kummerer K., The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida, Ecotox. Environ. Safe., 2008, 71, 498–505CrossRefGoogle Scholar
  21. [21]
    García-Ripoll A., Amata A.M., Arques A., Vicente R., Ballesteros Martín M.M., Sánchez Pérez J.A., et al., Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent, J. Hazard. Mater., 2009, 162, 1223–1227CrossRefPubMedGoogle Scholar
  22. [22]
    Castillo G.C., Vila I.C., Neild E., Ecotoxicity Assessment of Metals and Wastewater using Multitrophic Assays, Environ. Toxicol., 2000, 15, 370–375CrossRefGoogle Scholar
  23. [23]
    Choi K., Meier P.G., Toxicity Evaluation of Metal Plating Wastewater Employing the Microtox Assay: A Comparison with Cladocerans and Fish, Environ. Toxicol., 2001, 16, 136–141CrossRefPubMedGoogle Scholar
  24. [24]
    Kungolos A., Hadjispyrou S., Petala M., Tsiridis V., Samaras P., Sakellaropoulos G.P., Toxic properties of metals and organotin compounds and their interactions on Daphnia magna and Vibrio fischeri, Water Air Soil Poll.: Focus, 2004, 4, 101–110CrossRefGoogle Scholar
  25. [25]
    Dalmacija B., Prica M., Ivančev-Tumbas I., van der Kooij A., Roncevic S., Krcmar D., Bikit I, et al., Pollution of the Begej Canal sediment — metals, radioactivity and toxicity assessment, Environ Int., 2006, 32, 606–615CrossRefPubMedGoogle Scholar
  26. [26]
    Teodorovic I., Becelic M., Planojevic I., Ivancev-Tumbas I., Dalmacija B., The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia). Environ. Monit. Assess., (in press), DOI 10.1007/ s10661-008-0591-0Google Scholar
  27. [27]
    ISO 6341:1996, Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) — Acute toxicity test, International Organization for Standardization, Geneve, Switzerland, 1996Google Scholar
  28. [28]
    Teodorovic I., Planojevic, I., Daphnia magna culturing methods — implications on chronic toxicity tests, Fresenius Environ. Bull., 2008, 17, 985–991Google Scholar
  29. [29]
    Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed., EPA-821-R-02-012. U.S. Environmental Protection Agency, Cincinnati, OH, 2002Google Scholar
  30. [30]
    ISO 11348-3:2007, Water quality — Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) — Part 3: Method using freeze-dried bacteria, International Organisation for standardisation, Geneve, Switzerland, 2007Google Scholar
  31. [31]
    Dierickx P.J., Bredael-Rozen, E., Correlation Between the In Vitro Cytotoxicity of Inorganic Metal Compounds to Cultured Fathead Minnow Fish Cells and the Toxicity to Daphnia magna, Bull. Environ. Contam. Toxicol., 1996, 57, 107–110CrossRefPubMedGoogle Scholar
  32. [32]
    Sorvari J., Sillanpaa M., Influence of Metal Complex Formation on Heavy Metal and Free EDTA and DTPA Acute Toxicity Determined by Daphnia magna, Chemosphere, 1996, 33, 1119–1127CrossRefGoogle Scholar
  33. [33]
    Arambašić M.B., Bjelić S., Subakov G., Acute Toxicity of Heavy Metals (Copper, Lead, Zinc), Phenol and Sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna St.: Comparative investigations and the practical applications, Water Res., 1995, 29, 497–503CrossRefGoogle Scholar
  34. [34]
    Rosen G., Osoiro-Robayo A., Rivera-Duarte I., Lapota D., Comparison of Biolumininescent Dinoflagellate (QwikLite) and Bacterial (Microtox) Rapid Bioassays for the Detection of Metal and Ammonia Toxicity, Arch. Environ. Con. Tox., 2007, 54, 606–611CrossRefGoogle Scholar
  35. [35]
    Ishaque A.B., Johnson L., Gerald T., Boucaud D., Okoh J., Tchounwou P.B., Assessment of Individual and Combined Toxicities of Four Non-Essential Metals (As, Cd, Hg and Pb) in the Microtox Assay, Int. J. Environ. Res. Public Health, 2006, 3, 118–120CrossRefPubMedGoogle Scholar
  36. [36]
    Bauda P., Block J.C., Role of envelops of Gramnegative bacteria in cadmium binding and toxicity, Toxic. Assess., 1990, 5, 47–60CrossRefGoogle Scholar
  37. [37]
    Fulladosa E., Murat J.C, Villaescusa I., Effect of Cadmium(II), Chromium(VI), and Arsenic(V) on Long-Term Viability- and Growth-Inhibition Assays Using Vibrio fischeri Marine Bacteria, Arch. Environ. Con. Tox., 2005, 49, 299–306CrossRefGoogle Scholar
  38. [38]
    Prokop Z., Cupr P., Zlevorova-Zlamalikova V., Komarek J., Dusek L., Holoubek I., Mobility, bioavailability, and toxic effects of cadmium in soil samples, Environ. Res., 2003, 91, 119–126CrossRefPubMedGoogle Scholar
  39. [39]
    Codina J.C., Perez-Garcia A., Romero P., De Vicente A., A comparison of microbial bioassays for the detection of metal toxicity, Arch. Environ. Cont. Tox., 1993, 25, 250–254Google Scholar
  40. [40]
    Sponza D.T., Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents), Environ. Monit. Assess., 2002, 73, 41–66CrossRefPubMedGoogle Scholar
  41. [41]
    Rodriguez P., Martinez-Madrid M., Cid A., Ecotoxicological assessment of effluents in the Basque country (Northern Spain) by acute and chronic toxicity tests using Daphnia magna Straus, Ecotoxicology, 2006, 15, 559–572CrossRefPubMedGoogle Scholar
  42. [42]
    Bhattacharyya J., Read D., Amos S., Dooley S., Killham K., Paton G.I., Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy, Environ. Monit. Assess., 2005, 134, 485–492Google Scholar
  43. [43]
    Hernando M.D., Fernandez-Alba A.R., Tauler R., Barcelo D., Toxicity assays applied to wastewater treatment, Talanta, 2005, 65, 358–366CrossRefPubMedGoogle Scholar
  44. [44]
    Johnson I., Hutchings M., Benstead R., Thain J., Whitehouse P., Bioassay Selection, Experimental Design and Quality Control/Assurance for use in Effluent Assessment and Control, Ecotoxicology, 2004, 13, 437–447CrossRefPubMedGoogle Scholar
  45. [45]
    Manusadzianas L., Balkelyte L., Sadauskas K., Blinova I., Pollumaa L., Kahru A., Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemical-based indices, Aquat. Toxicol., 2003, 63, 27–41CrossRefPubMedGoogle Scholar
  46. [46]
    Maxam G., Rila J.P., Dott W., Eisentraeger A., Use of Bioassays for Assessment of Water-Extractable Ecotoxic Potential of Soils, Ecotoxicol. Environ. Saf., 2000, 45, 240–246CrossRefPubMedGoogle Scholar
  47. [47]
    Planojevic I., Optimalan izbor testova za procenu ekotoksičnosti kontaminiranog sedimenta, MSc thesis, University of Novi Sad Faculty of Sciences, Novi Sad, Serbia, 2007, (in Serbian)Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ivana Teodorovic
    • 1
  • Ivana Planojevic
    • 1
  • Petar Knezevic
    • 1
  • Sonja Radak
    • 1
  • Irena Nemet
    • 1
  1. 1.Laboratory for Ecotoxicology (LECOTOX)University of Novi Sad Faculty of Sciences Department of Biology and EcologyNovi SadSerbia

Personalised recommendations