Central European Journal of Biology

, Volume 4, Issue 4, pp 499–506 | Cite as

Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn

  • Wende Li
  • Arnold W. Hydamaka
  • Lynda Lowry
  • Trust Beta
Research Article
  • 585 Downloads

Abstract

Antioxidant capacity and phenolic compounds (phenolic acids and anthocyanins) of four berry fruits (strawberry, Saskatoon berry, raspberry and wild blueberry), chokecherry and seabuckthorn were compared in the present study. Total phenolic content and total anthocyanin content ranged from 22.83 to 131.88 g/kg and 3.51 to 13.13 g/kg, respectively. 2,2-Diphenyl-1-picryhydrazyl free radical scavenging activity ranged from 29.97 to 78.86%. Chokecherry had the highest antioxidant capacity when compared with berry fruits and seabuckthorn. The highest caffeic acid, gallic acid and trans-cinnamic acid levels were found in chokecherry (6455 mg/kg), raspberry (1129 mg/kg) and strawberry (566 mg/kg), respectively. Caffeic acid was also the major phenolic acid in Saskatoon berry (2088 mg/kg) and wild blueberry (1473 mg/kg). The findings that chokecherry has very high antioxidant capacity and caffeic acid levels, are useful for developing novel value-added antioxidant products and also provide evidence essential for breeding novel cultivars of fruit plants with strong natural antioxidants.

Keywords

Berry fruits Chokecherry Antioxidant capacity Radical scavenging Phenolic compounds Anthocyanin Phenolic acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ames B.M., Shigens M.K., Hagen T.M., Oxidants, antioxidants and the degenerative diseases of aging, Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 7915–7922CrossRefPubMedGoogle Scholar
  2. [2]
    Halliwell B., Free radical, antioxidants and human disease: curiosity, cause or consequence, Lancet, 1994, 344, 721–724CrossRefPubMedGoogle Scholar
  3. [3]
    Ribolin E., Norat T., Epidemiological evidence of the protective effect of fruit and vegetables on cancer risk, Am. J. Clin. Nutr., 2003, 78, 559S–569SGoogle Scholar
  4. [4]
    Eberhardt M.V., Lee C.Y., Liu R.H., Antioxidant activity of fresh apples, Nature, 2000, 405, 903–904PubMedGoogle Scholar
  5. [5]
    Arts I.C., Hollman P.C., Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr., 2005, 81, 243S–255SGoogle Scholar
  6. [6]
    Kallio H., Yang B., Peippo P., Effects of different origins and harvesting time on Vitamin C, tocopherols and tocotrienols in seabuckthorn (Hippophane rhamnoides) berries, J. Agric. Food Chem., 2002, 50, 6136–6142CrossRefPubMedGoogle Scholar
  7. [7]
    Scalzo J., Politi A., Pellegrini N., Mezzetti B., Battino M., Plant genotype affects total antioxidant capacity and phenolic contents in fruit, Nutrition, 2005, 21, 207–213CrossRefPubMedGoogle Scholar
  8. [8]
    Aaby K., Ekeberg D., Skrede G., Characterization of phenolic compounds in strawberry (Fragaria × ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity, J. Agric. Food Chem., 2007, 55, 4395–4406CrossRefPubMedGoogle Scholar
  9. [9]
    Tulipani S., Mezzetti B., Capocasa F., Bompadre S., Beekwilder J., Vos C.H.R.D., et al., Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes, J. Agric. Food Chem., 2008, 56, 696–704CrossRefPubMedGoogle Scholar
  10. [10]
    Zhang Y., Seeram N.P., Lee R., Feng L., Heber D., Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties, J. Agric. Food Chem., 2008, 56, 670–675CrossRefPubMedGoogle Scholar
  11. [11]
    Slimestad R., Solheim H., Anthocyanins from black currants (Ribes nigrum L.), J. Agric. Food Chem., 2002, 50, 3228–3231CrossRefPubMedGoogle Scholar
  12. [12]
    McDougall G.J., Dobson P., Smith P., Blake A., Stewart D., Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system, J. Agric. Food Chem., 2005, 53, 5896–5904CrossRefPubMedGoogle Scholar
  13. [13]
    Zhou K., Yu L., Effects of extraction solvent on wheat bran antioxidant activity estimation, LWT-Food Sci. Technol., 2004, 37, 717–721Google Scholar
  14. [14]
    Kresty L.A., Howell A.B., Baird M., Cranberry proanthocyanidins induce apoptosis and inhibit acid-induced proliferation of human esophageal adenocarcinoma cells, J. Agric. Food Chem., 2008, 56, 676–680CrossRefPubMedGoogle Scholar
  15. [15]
    Seeram N.P., Berry fruits for cancer prevention: current status and future prospects, J. Agric. Food Chem., 2008, 56, 630–635CrossRefPubMedGoogle Scholar
  16. [16]
    Li W., Wei C., White P.J., Beta T., High-amylose corn exhibits better antioxidant activity than typical and waxy genotypes, J. Agric. Food Chem., 2007, 55, 291–298CrossRefPubMedGoogle Scholar
  17. [17]
    Li W., Pickard M.D., Beta T., Evaluation of antioxidant activity and electronic taste and aroma properties of antho-beers from purple wheat grain, J. Agric. Food Chem., 2007, 55, 8958–8966CrossRefPubMedGoogle Scholar
  18. [18]
    Guisti M.M., Wrolstad R.E., Characterization and measurement of anthocyanins by UV-visible spectroscopy, In: Wrolstad R.E., (Ed.), Current Protocols in Food Analytical Chemistry, John Wiley & Sons Inc, New York, 2000Google Scholar
  19. [19]
    Brand-Williams W., Cuvelier M.E., Berset C., Use of a free radical method to evaluate antioxidant activity, LWT-Food Sci. Technol., 1995, 28, 25–30CrossRefGoogle Scholar
  20. [20]
    Li W., Pickard M.D., Beta T., Effect of thermal processing on antioxidant properties of purple wheat bran, Food Chem., 2007, 104, 1080–1086CrossRefGoogle Scholar
  21. [21]
    Garcia-Alonso F.J., Guidarelli A., Periago M.J., Phenolic-rich juice prevents DNA single-strand breakage and cytotoxicity caused by tertbutylhydroperoxide in U937 cells: the role of iron chelation, J. Nutr. Biochem., 2007, 18, 457–466CrossRefPubMedGoogle Scholar
  22. [22]
    Yi W., Akoh C.C., Fischer J., Krewer G., Effects of phenolic compounds in blueberries and muscadine grapes on HepG2 cell viability and apoptosis, Food Res. Int., 2006, 39, 628–638CrossRefGoogle Scholar
  23. [23]
    Kay C.D., Holub B.J., The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects, Br. J. Nutr., 2002, 88, 389–398CrossRefPubMedGoogle Scholar
  24. [24]
    Kang S.Y., Seeram N.P., Nair M.G., Bourquin L.D., Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells, Cancer Lett., 2003, 194, 13–19CrossRefPubMedGoogle Scholar
  25. [25]
    Cooke D., Schwarz M., Boocock D., Winterhalter P., Steward W.P., Gescher A.J., et al., Effect of cyanidin-3-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis — Relationship with tissue anthocyanin levels, Int. J. Cancer, 2006, 119, 2213–2220CrossRefPubMedGoogle Scholar
  26. [26]
    Singletary K.W., Jung K.J., Giusti M., Anthocyaninrich grape extract blocks breast cell DNA damage, J. Med. Food, 2007, 10, 244–251CrossRefPubMedGoogle Scholar
  27. [27]
    Zhao C., Monica G., Malik M., Moyer M.P., Magnuson B.A., Effects of commercial anthocyaninrich extracts on colonic cancer and nontumorigenic colonic cell growth, J. Agric. Food Chem., 2004, 52, 6122–6128CrossRefPubMedGoogle Scholar
  28. [28]
    Zhou K., Yu L., Antioxidant properties of bran extracts from Trego wheat grown at different locations, J. Agric. Food Chem., 2004, 52, 1112–1117CrossRefPubMedGoogle Scholar
  29. [29]
    Onyeneho S.N., Hettiarachchy N.S., Antioxidant activity of durum wheat bran, J. Agric. Food Chem., 1992, 40, 1496–1500CrossRefGoogle Scholar
  30. [30]
    Villaño D., Fernández-Pachón M.S., Troncoso A.M., García-Parrilla M.C., Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro, Anal. Chim. Acta, 2005, 538, 391–398CrossRefGoogle Scholar
  31. [31]
    Sánchez-Moreno C., Larrauri J.A., Saura-Calixto F., A procedure of measure the antiradical efficiency of polyphenols, J. Sci. Food Agric., 1998, 76, 270–276CrossRefGoogle Scholar
  32. [32]
    Chung T.-W., Moon S.-K, Chang Y.-C, Ko J.-H., Lee Y.-C., Cho G., et al., Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism, FASEB J., 2004, 18, 1670–1681CrossRefPubMedGoogle Scholar
  33. [33]
    Kang K.A, Lee K.H., Zhang R., Piao M., Chae S., Kim K.N., et al., Caffeic acid protects hydrogen peroxide induced cell damage in WI-38 human lung fibroblast cells, Biol. Pharm. Bull., 2006, 29, 1820–1824CrossRefPubMedGoogle Scholar
  34. [34]
    Tanaka T., Kojima T., Kawamori T., Wang A., Suzui M., Okamoto K., et al., Inhibition of 4-nitroquinoline-1-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolic caffeic, ellagic, chlorogenic and ferulic acids, Carcinogenesis, 1993, 14, 1321–1325CrossRefPubMedGoogle Scholar
  35. [35]
    Zhao Z., Moghadasian M.H., Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review, Food Chem., 2008, 109, 691–702CrossRefGoogle Scholar
  36. [36]
    Abdel-Wahab M.H., Ei-Mahdy M.A., Abd-Ellah M.F., Helal G.K., Khalifa F., Hamada F.M.A., Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat’s heart, Pharmacol Res., 2003, 48, 461–465CrossRefPubMedGoogle Scholar
  37. [37]
    Luceri C., Giannini L., Lodovici M., Antonucci E., Abbate R., Masini E., et al., p-Coumaric acid, a common dietary phenol, inhibits platelet activity in vitro and in vivo, Br. J. Nutr., 2007, 97, 458–463CrossRefPubMedGoogle Scholar
  38. [38]
    Yip E.C.H., Chan A.S.L., Pang H., Tam Y.K., Wong Y.H., Protocatechuic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism, Cell Biol. Toxicol., 2006, 22, 293–302CrossRefPubMedGoogle Scholar
  39. [39]
    Faried A., Kurnia D., Faried L.S., Usman N., Miyazaki T., Kato H., et al, Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines, Int. J. Oncol., 2007, 30, 605–613PubMedGoogle Scholar
  40. [40]
    Yoshioka K., Kataoka T., Hayashi T., Hasegawa M., Ishi Y., Hibasami H., Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines, Oncol. Rep., 2000, 7, 1221–1223PubMedGoogle Scholar
  41. [41]
    Ohno Y., Fukuda K., Takemura G., Toyota M., Watanabe M., Yasuda N., et al., Induction of apoptosis by gallic acid in lung cancer cells, Anti-Cancer Drugs, 1999, 10, 845–851CrossRefPubMedGoogle Scholar
  42. [42]
    Rastogi N., Goh K.S., Horgen L., Barrow W.W., Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against mycobacterium tuberculosis, FEMS Immunol. Med. Microbiol., 1998, 21, 149–157CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Wende Li
    • 1
  • Arnold W. Hydamaka
    • 1
  • Lynda Lowry
    • 2
  • Trust Beta
    • 1
    • 3
  1. 1.Department of Food ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Food Development CentrePortage la PrairieManitobaCanada
  3. 3.Richardson Centre for Functional Foods & Nutraceuticals, SmartparkUniversity of ManitobaWinnipegCanada

Personalised recommendations