Advertisement

Central European Journal of Biology

, Volume 4, Issue 3, pp 369–380 | Cite as

Improvement of inflammatory and toxic stress biomarkers by silymarin in a murine model of type one diabetes mellitus

  • Farshad Malihi
  • Azadeh Hosseini-Tabatabaei
  • Hadi Esmaily
  • Reza Khorasani
  • Maryam Baeeri
  • Mohammad AbdollahiEmail author
Research Article
  • 100 Downloads

Abstract

Type 1 diabetes mellitus (T1DM) is characterized by an impairment of the insulin-secreting beta cells with an immunologic base. Inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and free radicals are believed to play key roles in destruction of pancreatic β cells. The present study was designed to investigate the effect of Silybum marianum seed extract (silymarin), a combination of several flavonolignans with immunomodulatory, anti-oxidant, and anti-inflammatory potential on streptozotocin (STZ)-induced T1DM in mouse. Experimental T1DM was induced in male albino mice by IV injection of multiplelow- doses of STZ for 5 days. Seventy-two male mice in separate groups received various doses of silymarin (20, 40, and 80 mg/kg) concomitant or after induction of diabetes for 21 days. Blood glucose and pancreatic biomarkers of inflammation and toxic stress (IL-1β, TNF-α, myeloperoxidase, lipid peroxidation, protein oxidation, thiol molecules, and total antioxidant capacity) were determined. Silymarin treatment reduced levels of inflammatory cytokines such as TNF-α and IL-1β and oxidative stress mediators like myeloperoxidase activity, lipid peroxidation, carbonyl and thiol content of pancreatic tissue in an almost dose dependent manner. No marked difference between the prevention of T1DM and the reversion of this disease by silymarin was found. Use of silymarin seems to be helpful in T1DM when used as pretreatment or treatment. Benefit of silymarin in human T1DM remains to be elucidated by clinical trials.

Keywords

Silymarin Diabetes Antioxidants Streptozotocin Oxidative stress Inflammatory cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bardsley J.K., Want L.L., Overview of diabetes, Crit. Care Nurs. Q., 2004, 27, 106–112PubMedGoogle Scholar
  2. [2]
    Morran M.P., Omenn G.S., Pietropaolo M., Immunology and genetics of type 1 diabetes, Mt Sinai J. Med., 2008, 75, 314–327PubMedCrossRefGoogle Scholar
  3. [3]
    Mollah Z.U., Pai S., Moore C., O’sullivan B.J., Harrison M.J., Peng J., et al., Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes, J. Immunol., 2008, 180, 3166–3175PubMedGoogle Scholar
  4. [4]
    Mohseni-Salehi-Monfared S.S., Larijani B., Abdollahi M., Islet transplantation and antioxidant management: A systematic review, World J. Gastroenterol., 2009, 15, 513–520CrossRefGoogle Scholar
  5. [5]
    Kajbaf F., Mojtahedzadeh M., Abdollahi M., Mechanisms underlying stress-induced hyperglycemia in critically ill patients, Therapy, 2007, 4, 97–106CrossRefGoogle Scholar
  6. [6]
    Gille L., Schott-Ohly P., Friesen N., Schulte im Walde S., Udilova N., Nowl H., et al., Generation of hydroxyl radicals mediated by streptozotocin in pancreatic islets of mice in vitro, Pharmacol. Toxicol., 2002, 90, 317–326Google Scholar
  7. [7]
    Kawasaki E., Abiru N., Eguchi K., Prevention of type 1 diabetes: From the view point of β cell damage, Diabetes Res. Clin. Pract., 2004, 66, S27–S32PubMedCrossRefGoogle Scholar
  8. [8]
    Rahimi R., Nikfar S., Larijani B., Abdollahi M., A review on the role of antioxidants in the management of diabetes and its complications, Biomed. Pharmacother., 2005, 59, 365–373PubMedCrossRefGoogle Scholar
  9. [9]
    Jung C.H., Zhou S., Ding G.X., Kim J.H., Hong M.H., Shin Y.C., et al., Antihyperglycemic activity of herb extracts on streptozotocin-induced diabetic rats, Biosci. Biotechnol. Biochem., 2006, 70, 2556–2559PubMedCrossRefGoogle Scholar
  10. [10]
    Hasani-Ranjbar Sh., Larijani B., Abdollahi M., A systematic review of Iranian medicinal plants useful in diabetes mellitus, Arch. Med. Sci., 2008, 4, 285–292Google Scholar
  11. [11]
    Pradhan S.C., Girish C., Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine, Indian J. Med. Res., 2006, 124, 491–504PubMedGoogle Scholar
  12. [12]
    Toklu H.Z., Tunali Akbay T., Velioglu-Ogunc A., Ercan F., Gedik N., Keyer-Uysal M., et al., Silymarin, the antioxidant component of Silybum marianum, prevents sepsis-induced acute lung and brain injury, J. Surg. Res., 2008,145, 214–222PubMedCrossRefGoogle Scholar
  13. [13]
    Guigas B., Naboulsi R., Villanueva G.R., Taleux N., Lopez-Novoa J.M., Leverve X.M., et al., The flavonoid silibinin decreases glucose-6-phosphate hydrolysis in perfused rat hepatocytes by an inhibitory effect on glucose-6-phosphatase, Cell Physiol. Biochem., 2007, 20, 925–934PubMedCrossRefGoogle Scholar
  14. [14]
    Hussain S.A., Silymarin as an adjunct to glibenclamide therapy improves long-term and postprandial glycemic control and body mass index in type 2 diabetes, J. Med. Food, 2007, 10, 543–547PubMedCrossRefGoogle Scholar
  15. [15]
    Vengerovskii A.I., Khazanov V.A., Eskina K.A., Vasilyev K.Y., Effects of silymarin (hepatoprotector) and succinic acid (bioenergy regulator) on metabolic disorders in experimental diabetes mellitus, Bull. Exp. Biol. Med., 2007, 144, 53–56PubMedCrossRefGoogle Scholar
  16. [16]
    Saller R., Meier R., Brignoli R., The use of silymarin in the treatment of liver diseases, Drugs, 2001, 61, 2035–2063PubMedCrossRefGoogle Scholar
  17. [17]
    Esmaily H., Hosseini-Tabatabaei A., Rahimian R., Khorasani R., Baeeri M., Barazesh-Morgani A., et al., On the benefits of silymarin in murine colitis by improving balance of destructive cytokines and reduction of toxic stress in the bowel cells, Cent. Eur. J. Biol., 2009, 4, 204–213CrossRefGoogle Scholar
  18. [18]
    Koch H.P., Bachner J., Loffler E., Silymarin: potent inhibitor of cyclic AMP phosphodiesterase, Methods Find. Exp. Clin. Pharmacol., 1985, 7, 409–413PubMedGoogle Scholar
  19. [19]
    Beretz A., Anton R., Stoclet J.C., Flavonoid compounds are potent inhibitors, Experientia, 1978, 34, 1054–1055PubMedCrossRefGoogle Scholar
  20. [20]
    Milani E., Nikfar S., Khorasani R., Zamani M.J., Abdollahi M., Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2005, 140, 1054–1055CrossRefGoogle Scholar
  21. [21]
    Khoshakhlagh P., Bahrololoumi-Shapourabadi M., Mohammadirad A., Ashtaral-Nakhai L., Minaie B., Abdollahi M., Beneficial effect of phosphodiesterase-5 inhibitor in experimental inflammatory bowel disease; molecular evidence for involvement of oxidative stress, Toxicol. Mech. Methods, 2007, 17, 281–288CrossRefGoogle Scholar
  22. [22]
    Zamani M.J., Sharifzadeh M., Rezaie A., Mashayekhi F., Abdollahi M., Effects of sildenafil on rat irritable bowel syndrome, Therapy, 2005, 2, 237–242CrossRefGoogle Scholar
  23. [23]
    Rainone F., Milk thistle, Am. Fam. Physician, 2005, 72, 1285–1288PubMedGoogle Scholar
  24. [24]
    Kang J.S., Jeon Y.J., Kim H.M., Han S.H., Yang K.H., Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages, J. Pharmacol. Exp. Ther., 2002, 302, 138–144PubMedCrossRefGoogle Scholar
  25. [25]
    Luper S., A review of plants used in the treatment of liver disease: part 1, Altern. Med. Rev., 1998, 3, 410–421PubMedGoogle Scholar
  26. [26]
    Kang J.S., Jeon Y.J., Park S.K., Yang K.H., Kim H.M., Protection against lipopolysaccharide-induced sepsis and inhibition of interleukin-1beta and prostaglandin E2 synthesis by silymarin, Biochem. Pharmacol., 2004, 67, 175–181PubMedCrossRefGoogle Scholar
  27. [27]
    Manna S.K., Mukhopadhyay A., Van N.T., Aggarwal B.B., Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis, J. Immunol., 1999, 163, 6800–6809PubMedGoogle Scholar
  28. [28]
    Hosseini-Tabatabaei A., Esmaily H., Rahimian R., Khorasani R., Baeeri M., Barazesh-Morgani A., et al., Benefit of nicorandil on an immunologic murine model of experimental colitis, Cent. Eur. J. Biol., 2009, 4, 74–85CrossRefGoogle Scholar
  29. [29]
    Karabatas L.M., Pastorale C., de Bruno L.F., Maschi F., Pivetta O.H., Lombardo Y.B., et al., Early manifestations in multiple-low-dose streptozotocin-induced diabetes in mice, Pancreas, 2005, 30, 318–324PubMedCrossRefGoogle Scholar
  30. [30]
    Astaneie F., Afshari M., Mojtahedi A., Mostafalou S., Zamani M.J., Larijani B., et al., Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients, Arch. Med. Res., 2005, 36, 376–381PubMedCrossRefGoogle Scholar
  31. [31]
    Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., et al., Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol., 1990, 186, 464–478PubMedCrossRefGoogle Scholar
  32. [32]
    Radfar M., Larijani B., Hadjibabaie M., Rajabipour B., Mojtahedi A., Abdollahi M., Effects of pentoxifylline on oxidative stress and levels of EGF and NO in blood of diabetic type-2 patients; a randomized, double-blind placebo-controlled clinical trial, Biomed. Pharmacother., 2005, 59, 302–306PubMedCrossRefGoogle Scholar
  33. [33]
    Hu M.L., Dillard C.J., Plasma SH and GSH measurement, Methods Enzymol., 1994, 233, 385–387CrossRefGoogle Scholar
  34. [34]
    Ashtaral-Nakhai L., Mohammadirad A., Yasa N., Minaie B., Nikfar S., Ghazanfari G., et al., Benefits of Zataria multiflora boiss in experimental model of mouse inflammatory bowel disease, Evid. Based Complement. Alternat. Med., 2007, 4, 43–50CrossRefGoogle Scholar
  35. [35]
    Bradfort M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem., 1976, 72, 248–254CrossRefGoogle Scholar
  36. [36]
    Soto C., Mena R., Luna J., Cerbon M., Larrieta E., Vital P., et al., Silymarin induces recovery of pancreatic function after alloxan damage in rats, Life Sci., 2004,75, 2167–2180PubMedCrossRefGoogle Scholar
  37. [37]
    Soto C., Recoba R., Barron H., Alvarez C., Favari L., Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas, Comp. Biochem. Physiol. Part C., 2003,136, 205–212CrossRefGoogle Scholar
  38. [38]
    Soto C., Perez B.L., Favari L.P., Reyes J.L., Prevention of alloxan-induced diabetes mellitus in the rat by silymarin, Comp. Biochem. Physiol., 1998,119C,125–129Google Scholar
  39. [39]
    Afshari M., Larijani B., Rezaie A., Mojtahedi A., Zamani M.J., Astanehi-Asghari F., et al., Ineffectiveness of allopurinol in reduction of oxidative stress in diabetic patients; a randomized, double-blind placebo-controlled clinical trial, Biomed. Pharmacother., 2004, 58, 546–550PubMedCrossRefGoogle Scholar
  40. [40]
    Rabinovitch A., Suarez-Pinzon W.L., Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus, Biochem. Pharmacol., 1998, 55, 1139–1149PubMedCrossRefGoogle Scholar
  41. [41]
    Maritim A.C., Sanders R.A., Watkins J.B.3rd., Diabetes, oxidative stress, and antioxidants: a review, J. Biochem. Mol. Toxicol., 2003, 17, 24–38PubMedCrossRefGoogle Scholar
  42. [42]
    Hosseini-Tabatabaei A., Abdollahi M., Potassium channel openers and improvement of toxic stress: Do they have role in the management of inflammatory bowel disease?, Inflamm. Allergy Drug. Targets, 2008, 7, 129–135PubMedCrossRefGoogle Scholar
  43. [43]
    Ansari G., Mojtahedzadeh M., Kajbaf F., Najafi A., Khajavi M.R., Khalili H., et al., How does blood glucose control with metformin influence intensive insulin protocols? Evidence for involvement of oxidative stress and inflammatory cytokines, Adv. Ther., 2008, 25, 681–702PubMedCrossRefGoogle Scholar
  44. [44]
    Hadidi E., Mojtahedzadeh M., Paknejad M.H., Nikfar S., Zamani M.J., Sahraian M.A., et al., Alterations of blood IL-8, TGF-β1 and nitric oxide levels in relation to blood cells in patients with acute brain injury, Therapy, 2006, 3, 413–419Google Scholar
  45. [45]
    Matsuda T., Ferreri K., Todorov I., Kuroda Y., Smith C.V., Kandeel F., et al., Silymarin protects pancreatic beta-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and janus kinase/signal transducer and activator of transcription pathways, Endocrinology, 2005, 146, 175–185PubMedCrossRefGoogle Scholar
  46. [46]
    Ranjbar A., Khani-Jazani K., Sedighi A., Jalali-Mashayekhi F., Ghazi-Khansari M., Abdollahi M., Alteration of body total antioxidant capacity and thiol molecules in human chronic exposure to aluminium, Toxicol. Environ. Chem., 2008, 90, 707–713CrossRefGoogle Scholar
  47. [47]
    Ramakrishna V., Jailkhani R., Evaluation of oxidative,e stress in insulin dependent diabetes mellitus (IDDM) patients, Diagn. Pathol., 2007, 2, 22PubMedCrossRefGoogle Scholar
  48. [48]
    Soleimani H., Ranjbar A., Baeeri M., Mohammadirad A., Khorasani R., Rat plasma oxidation status after Nigella sativa L. botanical treatment in CCL4-treated rats, Toxicol. Mech. Methods, 2008, 18, 725–731CrossRefGoogle Scholar
  49. [49]
    Abdollahi M., Fooladian F., Emami B., Zafari K., Bahreini-Moghadam A., Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva, Hum. Exp. Toxicol., 2003, 22, 587–592PubMedCrossRefGoogle Scholar
  50. [50]
    Abdollahi M., Bahreini-Moghadam A., Emami B., Fooladian F., Zafari K., Increasing intracellular cAMP and cGMP inhibits cadmium-induced oxidative stress in rat submandibular saliva, Comp. Biochem. Physiol. Toxicol. Pharmacol., 2003, 135C, 331–336CrossRefGoogle Scholar
  51. [51]
    Mohseni Salehi Monfared S.S., Larijani B., Abdollahi M., Islet transplantation and antioxidant management: a comprehensive review, World J. Gastroenterol., 2009, 15, 1153–1161PubMedCrossRefGoogle Scholar
  52. [52]
    Hasani-Ranjbar S., Larijani B., Abdollahi M., A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases, Inflamm. Allergy Drug Targets, 2009, 8, 2–10PubMedCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Farshad Malihi
    • 1
  • Azadeh Hosseini-Tabatabaei
    • 1
    • 2
  • Hadi Esmaily
    • 1
  • Reza Khorasani
    • 1
  • Maryam Baeeri
    • 1
  • Mohammad Abdollahi
    • 1
    Email author
  1. 1.Faculty of Pharmacy, and Pharmaceutical Sciences Research CenterTehran University of Medical Sciences (TUMS)TehranIran
  2. 2.BC Professional Fire Fighters’ Burn and Wound Healing Research Laboratory, Department of SurgeryUniversity of British ColumbiaVancouverCanada

Personalised recommendations