Central European Journal of Biology

, Volume 2, Issue 4, pp 597–659 | Cite as

Magnetoreception in microorganisms and fungi

  • Alexander PazurEmail author
  • Christine Schimek
  • Paul Galland
Review Article


The ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms. Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable magnetobiological effects are as yet completely understood in terms of their underlying physical principles. Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological experimentation. This review places major emphasis on theories, and magnetobiological effects that occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level, a fact that is partly due to a lack of model organisms and model responses; and in great part also to the circumstance that the biological community at large takes little notice of the field, and in particular of the available physical theories. We review the known magnetobiological effects for bacteria, protists and fungi, and try to show how the variegated empirical material could be approached in the framework of the available physical models.


magnetic field magnetoreception ion-cyclotron resonance magnetosomes quantum coherence radical-pair mechanism ecology climate change 



magnetic flux density (magnetic induction)


alternating magnetic field (generated by alternating current)


static magnetic field (generated by directed current)


coherent domain


extremely low frequency (i.e. magnetic field, ∼3–300 Hz)


electromagnetic field


magnetic field strength


ion interference mechanism


intersystem crossing


ion cyclotron resonance


ion parametric resonance


low frequency (i.e. magnetic field)


magnetic field


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.N. Zhadin: “Review of Russian literature on biological action of DC and lowfrequency AC magnetic fields”, Bioelectromagnetics, Vol. 22, (2001), pp. 27–45.PubMedCrossRefGoogle Scholar
  2. [2]
    H.S. Alexander: “Biomagnetics: the biological effects of magnetic fields”, Am. J. Med. Electron., Vol. 1, (1962), pp. 181–187.PubMedGoogle Scholar
  3. [3]
    J. Bernhardt: “Biologische Wirkungen elektromagnetischer Felder”, Z. Naturforsch., Vol. 34c, (1979), pp. 616–627 (in German).Google Scholar
  4. [4]
    J.L. Gould: “Sensory bases of navigation”, Curr. Biol., Vol. 8, (1998), pp. R731–R738.PubMedCrossRefGoogle Scholar
  5. [5]
    S. Johnsen and K.J. Lohmann: “The physics and neurobiology of magnetoreception”, Nature Rev., Vol. 6, (2005), pp. 703–712.CrossRefGoogle Scholar
  6. [6]
    R. Wiltschko and W. Wiltschko: Magnetic orientation in animals, Springer, Berlin, Heidelberg, New York, 1995.Google Scholar
  7. [7]
    P. Galland and A. Pazur: “Magnetoreception in plants”, J. Plant Res., Vol. 118, (2005), pp. 371–398.PubMedCrossRefGoogle Scholar
  8. [8]
    R.P. Blakemore: “Magnetotactic bacteria”, Ann. Rev. Microbiol., Vol. 36, (1982), pp. 217–238.CrossRefGoogle Scholar
  9. [9]
    W. Wiltschko and R. Wiltschko: “Magnetic orientation and magnetoreception in birds and other animals”, J. Comp. Physiol. A, Vol. 191, (2005), pp. 675–693.CrossRefGoogle Scholar
  10. [10]
    K.J. Lohmann and S. Johnsen: “The neurobiology of magnetoreception in vertebrate animals”, Trends Neurosci., Vol. 24, (2000), pp. 153–159.CrossRefGoogle Scholar
  11. [11]
    T. Ritz, S. Adem and K. Schulten: “A model for photoreceptor-based magnetoreception in birds”, Biophys. J., Vol. 78, (2000), pp. 707–718.PubMedCrossRefGoogle Scholar
  12. [12]
    T. Ritz, P. Thalau, J.B. Philipps, R. Wiltschko and W. Wiltschko: “Resonance effects indicate a radical-pair mechanism for avian magnetic compass”, Nature, Vol. 429, (2004), pp. 177–180.PubMedCrossRefGoogle Scholar
  13. [13]
    A. Möller, S. Sagasser, W. Wiltschko and B. Schierwater: “Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass”, Naturwissenschaften, Vol. 91, (2004), pp. 585–588.PubMedCrossRefGoogle Scholar
  14. [14]
    H. Mouritsen, U. Janssen-Bienhold, M. Liedvogel, G. Feenders, J. Stalleicken, P. Dirks and R. Weiler: “Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation”, Proc. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 14294–14299.PubMedCrossRefGoogle Scholar
  15. [15]
    M. Ahmad, P. Galland, T. Ritz, R. Wiltschko and W. Wiltschko: “Magnetic intensity affects cryptochrome-controlled response in Arabidopsis thaliana”, Planta, Vol. 225, (2007), pp. 615–624.PubMedCrossRefGoogle Scholar
  16. [16]
    R.P. Blakemore: “Magnetotactic bacteria”, Science, Vol. 190, (1975), pp. 377–379.PubMedCrossRefGoogle Scholar
  17. [17]
    M.M. Walker: “Magnetic orientation and the magnetic sense an arthropods”, In: M. Lehrer, (Ed.): Orientation and Communication in Arthropods, Birkhäuser, Basel, 1997, pp. 187–213.Google Scholar
  18. [18]
    D. Schüler: “Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense”, Arch. Microbiol., Vol. 181, (2004), pp. 1–7.PubMedCrossRefGoogle Scholar
  19. [19]
    V.N. Binhi, Y.D. Alipov and I.Y. Belyaev: “Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes”, Bioelectromagnetics, Vol. 22, (2001), pp. 79–86.PubMedCrossRefGoogle Scholar
  20. [20]
    A. Varga: “Proteinbiosynthese bei Mikroorganismen unter Einwirkung von äusseren elektromagnetischen Feldern”, Fortschr. Exp. Theor. Biophys., Vol. 20, (1976), pp. 1–107 (in German).Google Scholar
  21. [21]
    S. Rai, U.P. Singh, K.P. Singh and A. Singh, “Germination responses of fungal spores to magnetically restructured water”, Electro-Magnetobiol., Vol. 13, (1994), pp. 237–246.Google Scholar
  22. [22]
    G.D. Erygin, V.V. Pchelkina, A.K. Kulikova, N.G. Rusinova, A.M. Bezborodov and M.N. Gogolev: “Influence of the nutritional medium treatment of microorganims by magnetic field on the growth and development”, Prikl. Biokhim. Mikrobiol., Vol. 24, (1988), pp. 257–263.Google Scholar
  23. [23]
    J. Strazisar, S. Knez and S. Kobe: “The influence of the magnetic field on the Zeta potential of precipitated calcium carbonate”, Part. Part. Syst. Charact., Vol. 18, (2001), pp. 278–285.CrossRefGoogle Scholar
  24. [24]
    J. Nakagawa, N. Hirota, K. Kitazawa and M. Shoda: “Magnetic field enhancement of water vaporization”, J. Appl. Phys., Vol. 86, (1999), pp. 2923–2925.CrossRefGoogle Scholar
  25. [25]
    B.A. Baran and L.S. Degtyarev: “Magnetic field effect in ion exchange”, Russ. J. Gen. Chem., Vol. 71, (2001), pp. 1691–1693.CrossRefGoogle Scholar
  26. [26]
    A. Goldsworthy, H. Whitney and E. Morris: “Biological effects of physically conditioned water”, Water Research, Vol. 33, (1999), pp. 1618–1626.CrossRefGoogle Scholar
  27. [27]
    R.B. Frankel and R.P. Blakemore: “Magnetite and magnetotaxis in Microorganisms”, Biolectromagnetics, Vol. 10, (1989), pp. 223–237.CrossRefGoogle Scholar
  28. [28]
    H.G.P. Lins de Barros, D.M.S. Esquivel and M. Farina: “Magnetotaxis”, Sci. Progress Oxford, Vol. 74, (1990), pp. 347–359.Google Scholar
  29. [29]
    M.J. Smith, P.E. Sheehan, L.L. Perry, K. O’Connor, L.N. Csonka, B.M. Applegate and L.J. Whitman: “Quantifying the magnetic advantage in magnetotaxis”, Biophys. J., Vol. 91, (2006), pp. 1098–1107.PubMedCrossRefGoogle Scholar
  30. [30]
    J.F. Stolz, S.R. Chang and J.L. Kirschvink: “Magnetotactic bacteria and single domain magnetite in hemipelagic sediments”, Nature, Vol. 321, (1986), pp. 849–850.CrossRefGoogle Scholar
  31. [31]
    S.L. Simmons, S.M. Sievert, R.B. Frankel, D.A. Bazylinski and K.J. Edwards: “Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond”, Appl. Environm. Microbiol., Vol. 70, (2004), pp. 6230–6239.CrossRefGoogle Scholar
  32. [32]
    S. Spring, R. Amann, W. Ludwig, K.-H. Schleifer and N. Petersen: “Phylogenetic diversity and identification of nonculturable magnetotactic bacteria”, System. Appl. Microbiol., Vol. 15, (1992), pp. 116–122.Google Scholar
  33. [33]
    S. Spring, R. Amann, W. Ludwig, K.-H. Schleifer, H. van Gemerden and N. Petersen: “Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment”, Appl. Environm. Microbiol., Vol. 59, (1993), pp. 2397–2403.Google Scholar
  34. [34]
    T. Sakaguchi, A. Arakaki and T. Matsunaga: “Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles”, Int. J. Syst. Evol. Microbiol., Vol. 52, (2002), pp. 215–221.PubMedGoogle Scholar
  35. [35]
    D.A. Bazylinski, A.J. Dean, D. Schüler, E.J.P. Phillips and D.R. Lovley: “N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species”, Evironm. Microbiol., Vol. 2, (2000), pp. 266–273.CrossRefGoogle Scholar
  36. [36]
    F.F. Torres de Araujo, M.A. Pires, R.B. Frankel and C.E.M Bicudo: “Magnetite and magnetotaxis in algae”, Biophys. J., Vol. 50, (1986), pp. 375–378.CrossRefGoogle Scholar
  37. [37]
    R.P. Blakemore, D. Maratea and R.S. Wolfe: “Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium”, J. Bacteriol., Vol. 140, (1979), pp. 720–729.PubMedGoogle Scholar
  38. [38]
    D.A. Bazylinski, R.B. Frankel and H.W. Jannasch: “Anaerobic magnetite production by a marine magnetotactic bacterium”, Nature, Vol. 334, (1988), pp. 518–519.CrossRefGoogle Scholar
  39. [39]
    T. Matsunaga, T. Sakaguchi and F. Tadakoro: “Magnetite formation by a magnetic bacterium capable of growing aerobically”, Appl. Microbiol. Biotechnol., Vol. 35, (1991), pp. 651–655.CrossRefGoogle Scholar
  40. [40]
    K.-H. Schleifer, D. Schüler, S. Spring, M. Weizenegger, R. Amann, W. Ludwig and M. Köhler: “The genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov.”, System. Appl. Microbiol., Vol. 14, (1991), pp. 379–385.Google Scholar
  41. [41]
    D. Schüler and M. Köhler: “The isolation of a new magnetic spirillum”, Zentralblatt Mikrobiol., Vol. 147, (1992), pp. 150–151.Google Scholar
  42. [42]
    J.G. Burgess, R. Kawaguchi, T. Sakaguchi, R.H. Thornhill and T. Matsunaga: “Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences”, J. Bacteriol., Vol. 175, (1993), pp. 6689–6694.PubMedGoogle Scholar
  43. [43]
    F.C. Meldrum, S. Mann, B.R. Heywood, R.B. Frankel and D.A. Bazylinski: “Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium”, Prog. R. Soc. Lond., Vol. 251, (1993), pp. 231–236.CrossRefGoogle Scholar
  44. [44]
    F.C. Meldrum, S. Mann, B.R. Heywood, R.B. Frankel and D.A. Bazylinski: “Electron microscopy study of magnetosomes in two cultured vibroid magnetotactic bacteria”, Prog. R. Soc. Lond., Vol. 251, (1993), pp. 237–242.CrossRefGoogle Scholar
  45. [45]
    T. Sakaguchi, J.G. Burgess and T. Matsunaga: “Magnetite formation by a sulphatereducing bacterium”, Nature, Vol. 365, (1993), pp. 47–49.CrossRefGoogle Scholar
  46. [46]
    D. Schüler, S. Spring and D.A. Bazylinski: “Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization”, Syst. Appl. Microbiol., Vol. 22, (1999), pp. 466–471.PubMedGoogle Scholar
  47. [47]
    C.B. Flies, J. Peplies and D. Schüler: “Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments”, Appl. Environ. Microbiol., Vol. 71, (2005), pp. 2723–2731.PubMedCrossRefGoogle Scholar
  48. [48]
    E.A. Matitashvili, D.A. Matojan, T.S. Gendler, T.V. Kurzchalia and R.S. Adamia: “Magnetotactic bacteria from freshwater lakes in Georgia”, J. Basic Microbiol., Vol. 32, (1992), pp. 185–192.PubMedCrossRefGoogle Scholar
  49. [49]
    S.L. Simmons, D.A. Bazylinski and K.J. Edwards: “South-seeking magnetotactic bacteria in the northern hemisphere”, Science, Vol. 311, (2006), pp. 371–374.PubMedCrossRefGoogle Scholar
  50. [50]
    D.A. Bazylinski and R.P. Blakemoore: “Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum”, Appl. Environ. Microbiol., Vol. 46, (1983), pp. 1118–1124.PubMedGoogle Scholar
  51. [51]
    T. Matsunaga and N. Tsujimura: “Respiratory inhibitors of a magnetic bacterium Magnetospirillum sp. AMB-1 capable of growing aerobically”, Appl. Microbiol. Biotechnol., Vol. 39, (1993), pp. 368–371.Google Scholar
  52. [52]
    R.B. Frankel, R.P. Blakemore and R.P. Wolfe: “Magnetite in freshwater magnetotactic bacteria”, Science, Vol. 203, (1979), pp. 1355–1356.PubMedCrossRefGoogle Scholar
  53. [53]
    D.A. Bazylinski and R.P. Blakemoore: “Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum”, Curr. Microbiol., Vol. 9, (1983), pp. 305–308.CrossRefGoogle Scholar
  54. [54]
    E.F. De Long, R.B. Frankel and D.A. Bazylinski: “Multiple evolutionary origins of magnetotaxis in bacteria”, Science, Vol. 259, (1993), pp. 803–806.CrossRefGoogle Scholar
  55. [55]
    C.R. Woese: “Bacterial evolution”, Microbiol. Mol. Biol. Rev., Vol. 51, (1987), pp. 221–271.Google Scholar
  56. [56]
    S. Spring, U. Lins, R. Amann, K.-H. Schleifer, L.C.S. Ferreira, D.M.S. Esquivel and M. Farina: “Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes”, Arch. Microbiol., Vol. 169, (1998), pp. 136–147.PubMedCrossRefGoogle Scholar
  57. [57]
    S. Ullrich, M. Kube, S. Schübbe, R. Reinhardt and D. Schüler: “A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth”, J. Bacteriol., Vol. 187, (2005), pp. 7176–7184.PubMedCrossRefGoogle Scholar
  58. [58]
    M. Farina, H.G.P. Lins de Barros, D.M.S. Esquivel and J. Danon: “Ultrastructure of a magnetotactic microorganism”, Biol. Cell, Vol. 48, (1983), pp. 85–86.Google Scholar
  59. [59]
    U. Lins and M. Farina: “Organization of cells in magnetotactic multicellular aggregates”, Microbiol. Res., Vol. 154, (1999), pp. 9–13.Google Scholar
  60. [60]
    C.N. Keim, F. Abreu, H. Lins de Barros and M. Farina: “Cell organization and ultrastructure of a magnetotactic multicellular organism”, J. Struct. Biol., Vol. 145, (2004), pp. 254–262.PubMedCrossRefGoogle Scholar
  61. [61]
    M. Greenberg, K. Canter, I. Mahler I and A. Tornheim: “Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields”, Biophys. J., Vol. 88, (2005), pp. 1496–1499.PubMedCrossRefGoogle Scholar
  62. [62]
    R.B. Frankel, D.A. Bazylinski, M.S. Johnson and B.L. Taylor: “Magneto-aerotaxis in marine coccoid bacteria”, Biophys. J., Vol. 73, (1997), pp. 994–1000.PubMedCrossRefGoogle Scholar
  63. [63]
    J.E. Urban: “Adverse effect of microgravity on the magnetotactic bacterium Magnetospirillum magnetotacticum”, Acta Astronaut., Vol. 47, (2000), pp. 775–780.PubMedCrossRefGoogle Scholar
  64. [64]
    D.A. Bazylinski and R.B. Frankel: “Magnetosome formation in prokaryotes”, Nature Rev., Vol. 2, (2004), pp. 217–230.CrossRefGoogle Scholar
  65. [65]
    R.P. Blakemore, R.B. Frankel and A.J. Kalmijn: “South-seeking magnetotactic bacteria in the Southern hemisphere”, Nature, Vol. 286, (1980), pp. 384–385.CrossRefGoogle Scholar
  66. [66]
    D.R. Lovley, J.F. Stolz, G.L. Nord Jr. and E.J.P. Phillips: “Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism”, Nature, Vol. 330, (1987), pp. 252–254.CrossRefGoogle Scholar
  67. [67]
    S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinsky and H.W. Jannasch: “Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium”, Nature, Vol. 343, (1990), pp. 258–261.CrossRefGoogle Scholar
  68. [68]
    B.R. Heywood, D.A. Bazylinski, A. Garratt-Reed, S. Mann and R.B. Frankel: “Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria”, Naturwissenschaften, Vol. 77, (1990), pp. 536–538.CrossRefGoogle Scholar
  69. [69]
    M. Farina, D.M.S. Esquivel and H.G.P. Lins de Barros: “Magnetic iron-sulphur crystals from a magnetotactic microorgansim”, Nature, Vol. 343, (1990), pp. 256–261.CrossRefGoogle Scholar
  70. [70]
    D.A. Bazylinski, A.J. Garratt-Reed, A. Abedi and R.B. Frankel: “Copper association with iron sulfide magnetosomes in a magnetotactic bacterium”, Arch. Microbiol., Vol. 160, (1993), pp. 35–42.Google Scholar
  71. [71]
    D.A. Bazylinski, R.B. Frankel, B.R. Heywood, S. Mann, J.W. King, P.L. Donaghay and A.K. Hanson: “Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium”, Appl. Environm. Microbiol., Vol. 61, (1995), pp. 3232–3239.Google Scholar
  72. [72]
    D. Schüler and R.B. Frankel: “Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications”, Appl. Microbiol. Biotechnol., Vol. 52, (1999), pp. 464–473.PubMedCrossRefGoogle Scholar
  73. [73]
    U. Lins, F. Freitas, C.N. Keim and M. Farina: “Electron spectroscopic imaging of magnetotactic bacteria: magnetosome morphology and diversity”, Microsc. Microanal., Vol. 6, (2000), pp. 463–470.PubMedGoogle Scholar
  74. [74]
    H. Daims, J.L. Nielsen, P.H. Nielsen, K.-H. Schleifer and M. Wagner: “In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater”, Appl. Environ. Microbiol., Vol. 67, (2001), pp. 5273–5284.PubMedCrossRefGoogle Scholar
  75. [75]
    R.H. Thornhill, J.G. Burgess, T. Sakaguchi and T. Matsunaga: “A morphological classification of bacteria containing bullet-shaped magnetic particles”, FEMS Microbiol. Lett., Vol. 115, (1994), pp. 169–176.CrossRefGoogle Scholar
  76. [76]
    T. Matsunaga and T. Sakaguchi: “Molecular mechanism of magnet formation in bacteria”, J. Biosci. Bioeng., Vol. 90, (2000), pp. 1–13.PubMedGoogle Scholar
  77. [77]
    J.L. Kirschvink, A. Kobayashi-Kirschvink and B.J. Woodford: “Magnetite biomineralization in the human brain”, Proc. Natl. Acad. Sci. USA, Vol. 89, (1992), pp. 7683–7687.PubMedCrossRefGoogle Scholar
  78. [78]
    A.K. Kobayashi, J.L. Kirschvink and M.H. Nesson: “Ferromagnetism and EMFs”, Nature, Vol. 374, (1995), p. 123.PubMedCrossRefGoogle Scholar
  79. [79]
    J.C. Scaiano, S. Monahan and J. Renaud: “Dramatic effect of magnetite particles on the dynamics of photogenerated free radicals”, Photochem. Photobiol., Vol. 65, (1997), pp. 759–762.CrossRefGoogle Scholar
  80. [80]
    B.P. Weiss, J.L. Kirschvink, F.J. Baudenbacher, H. Vali, N.T. Peters, F.A. Mac-Donald and J.P. Wikswo: “A low temperature transfer of ALH84001 from Mars to Earth”, Science, Vol. 290, (2000), pp. 791–795.PubMedCrossRefGoogle Scholar
  81. [81]
    K.L. Thomas-Keprta, S.J. Clemett, D.A. Bazylinski, J.L. Kirschvink, D.S. McKay, S.J. Wu, H. Vali, E.K.J. Gibson, M.F. McKay and C.S. Romanek: “Truncated hexaoctahedral magnetite crystals in ALH84001: presumptive biosignatures”, Proc. Natl. Acad. Sci. USA, Vol. 98, (2001), pp. 2164–2169.PubMedCrossRefGoogle Scholar
  82. [82]
    I.E. Friedman, J. Wierzchos, C. Ascaso and M. Winkelhofer: “Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin”, Proc. Natl. Acad. Sci. USA, Vol. 98, (2001), pp. 2176–2181.CrossRefGoogle Scholar
  83. [83]
    D.J. Barber and E.R.D. Scott: “Origin of supposedly biogenic magnetite in the martian meteorite Allan Hills 84001”, Proc. Natl. Acad. Sci. USA, Vol. 99, (2002), pp. 6556–6561.PubMedCrossRefGoogle Scholar
  84. [84]
    A.H. Treiman: “Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: Inorganic, abiotic formation by shock and thermal metamorphism”, Astrobiol., Vol. 3, (2003), pp. 369–392.CrossRefGoogle Scholar
  85. [85]
    J.L. Kirschvink, M.M. Walker and C.E. Diebel: “Magnetite-based magnetoreception”, Curr. Opin. Neurobiol., Vol. 11, (2001), pp. 462–467.PubMedCrossRefGoogle Scholar
  86. [86]
    U. Lins and M. Farina: “Magnetosome size distribution in uncultured rod-shaped bacteria as determined by electron microscopy and electron spectroscopic imaging”, J. Microsc. Res. Tech., Vol. 42, (1998), pp. 459–464.CrossRefGoogle Scholar
  87. [87]
    D.A. Bazylinski, A.J. Garratt-Reed and R.B. Frankel: “Electron microscopic study of magnetosomes in magnetotactic bacteria”, J. Microsc. Res. Tech., Vol. 27, (1994), pp. 389–401.CrossRefGoogle Scholar
  88. [88]
    J.L. Kirschvink and J.W. Hagadorn: “A grand unified theory of biomineralization”, In: E. Bäuerlein (Ed.): The Biomineralization of Nano-and Micro-Structure, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2000, pp. 139–150.Google Scholar
  89. [89]
    R.F. Butler and S.K. Banerjee: “Theoretical single-domain grain size range in magnetite and titanomagnetite”, J. Geophys. Res., Vol. 80, (1975), pp. 4049–4058.CrossRefGoogle Scholar
  90. [90]
    J.C. Diaz-Ricci and J.L. Kirschvink: “Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations”, J. Geophys. Res., Vol. 97, (1992), pp. 17309–17315.CrossRefGoogle Scholar
  91. [91]
    R.E. Dunin-Borkowski, M.R. McCartney, R.B. Frankel, D.A. Bazylinski, M. Posfai and P.R. Buseck: “Magnetic microstructure of magnetotactic bacteria by electron holography”, Science, Vol. 282, (1998), pp. 1868–1870.PubMedCrossRefGoogle Scholar
  92. [92]
    M. Farina, B. Kachar, U. Lins, R. Broderick and H.G.P. Lins de Barros: “The observation of large magnetite (Fe3O4) crystals from magnetotactic bacteria by electron and atomic force microscopy”, J. Microsc., Vol. 173, (1994), pp. 1–8.Google Scholar
  93. [93]
    M.R. McCartney, U. Lins, M. Farina, P.R. Buseck and R.B. Frankel: “Magnetic microstructure of bacterial magnetite by electron holography”, Eur. J. Mineral., Vol. 13, (2001), pp. 685–689.CrossRefGoogle Scholar
  94. [94]
    S.K. Chaudhuri, J.G. Lack and J.D. Coates: “Biogenic magnetite formation through anaerobic biooxidation of Fe(II)”, Appl. Environm. Microbiol., Vol. 67, (2001), pp. 2844–2848.CrossRefGoogle Scholar
  95. [95]
    A. Bharde, A. Wani, Y. Shouche, P.A. Joy, B.L.V. Prasad and M. Sastry: “Bacterial aerobic synthesis of nanocrystalline magnetite”, J. Am. Chem. Soc., Vol. 127, (2005), pp. 9326–9327.PubMedCrossRefGoogle Scholar
  96. [96]
    A. Bharde, D. Rautaray, V. Bansal, A. Ahmad, I. Sarkar, S.M. Yusuf, M. Sanyal and M. Sastry: “Extracellular biosynthesis of magnetite using fungi”, Small, Vol. 2, (2006), pp. 135–141.PubMedCrossRefGoogle Scholar
  97. [97]
    C.N. Keim, G. Solorzano, M. Farina and U. Lins: “Intracellular inclusions of uncultured magnetotactic bacteria”, Int. Microbiol., Vol. 8, (2004), pp. 111–117.Google Scholar
  98. [98]
    D.L. Balkwill, D. Maratea and R.P. Blakemore: “Ultrastructure of a magnetototactic spirillum”, J. Bacteriol., Vol. 141, (1980), pp. 1399–1408.PubMedGoogle Scholar
  99. [99]
    A. Komeili, Z. Li, D.K. Newman and G.J. Jensen: “Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK”, Science, Vol. 311, (2006), pp. 242–245.PubMedCrossRefGoogle Scholar
  100. [100]
    R.B. Frankel and R.P. Blakemore: “Navigational compass in magnetic bacteria”, J. Magnet. Magnet. Mat., Vol. 15, (1980), pp. 1562–1564.CrossRefGoogle Scholar
  101. [101]
    C. Rosenblatt, F.F. Torres de Araujo and R.B. Frankel: “Birefringence determination of magnetic moments of magnetotactic bacteria”, Biophys. J., Vol. 40, (1982), pp. 83–85.PubMedCrossRefGoogle Scholar
  102. [102]
    U. Lins and M. Farina: “Amorphous mineral phases in magnetotactic multicellular aggregates”, Arch. Microbiol., Vol. 176, (2001), pp. 323–328.PubMedCrossRefGoogle Scholar
  103. [103]
    M. Pósfai, P.R. Buseck, D.A. Bazylinski and R.B. Frankel: “Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers”, Science, Vol. 280, (1998), pp. 880–883.PubMedCrossRefGoogle Scholar
  104. [104]
    D. Schüler: “Formation of magnetosomes in magnetotactic bacteria”, J. Mol. Biotechnol., Vol. 1, (1999), pp. 79–86.Google Scholar
  105. [105]
    D.A. Bazylinski: “Synthesis of the bacterial magnetosome: the making of a magnetic personality”, Int. Microbiol., Vol. 2, (1999), pp. 71–80.PubMedGoogle Scholar
  106. [106]
    D. Schüler: “The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense”, Int. Microbiol., Vol. 5, (2002), pp. 209–214.PubMedCrossRefGoogle Scholar
  107. [107]
    U. Heyen and D. Schüler: “Growth and magnetosome formation by mnicroaerophilic Magnetospirillum strains in an oxygen-controlled fermenter”, Appl. Microbiol. Biotechnol., Vol. 61, (2003), pp. 536–544.PubMedGoogle Scholar
  108. [108]
    A.P. Taylor and J.C. Barry: “Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes”, J. Microsc., Vol. 213, (2004), pp. 180–197.PubMedCrossRefGoogle Scholar
  109. [109]
    A. Komeili, H. Vali, T.J. Beveridge and D.K. Newman: “Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation”, Proc. Natl. Acad. Sci. USA, Vol. 101, (2004), pp. 3839–3844.PubMedCrossRefGoogle Scholar
  110. [110]
    A. Taoka, R. Asada, H. Sasaki, K. Anazawa, L.-F. Wu and Y. Fukumori: “Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum”, J. Bacteriol., Vol. 188, (2006), pp. 3805–3812.PubMedCrossRefGoogle Scholar
  111. [111]
    T. Matsunaga, H. Togo, T. Kikuchi and T. Tanaka: “Production of luciferasemagnetic particle complex by recombinant Magnetospirillum sp. AMB-1”, Biotechnol. Bioengin., Vol. 70, (2000), pp. 704–709.CrossRefGoogle Scholar
  112. [112]
    Y.A. Gorby, T.J. Beveridge and R.P. Blakemore: “Characterization of the bacterial magnetosome membrane”, J. Bacteriol., Vol. 170, (1988), pp. 834–841.PubMedGoogle Scholar
  113. [113]
    K. Grünberg, C. Wawer, BM. Tebo and D. Schüler: “A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria”, Appl. Environm. Microbiol., Vol. 67, (2001), pp. 4573–4582.CrossRefGoogle Scholar
  114. [114]
    S. Schübbe, C. Wurdemann, J. Peplies, U. Heyen, C. Wawer, F.O. Glockner and D. Schüler: “Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense”, Appl. Environ. Microbiol., Vol. 72, (2006), pp. 5757–5765.PubMedCrossRefGoogle Scholar
  115. [115]
    T. Suzuki, Y. Okamura, R.J. Calugay, H. Takayama and T. Matsunaga: “Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1”, J. Bacteriol., Vol. 188, (2006), pp. 2275–2279.PubMedCrossRefGoogle Scholar
  116. [116]
    D. Schüler and E. Bäuerlein: “Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense”, J. Bacteriol., Vol. 180, (1998), pp. 159–162.PubMedGoogle Scholar
  117. [117]
    S. Ofer, I. Nowik and E.R. Bauminger: “Magnetosome dynamics in magnetotactic bacteria”, Biophys. J., Vol. 46, (1984), pp. 57–64.PubMedCrossRefGoogle Scholar
  118. [118]
    L.C. Paoletti and R.P. Blakemore: “Hydoxamate production by Aquaspirillum magnetotoacticum”, J. Bacteriol., Vol. 167, (1986), pp. 73–76.PubMedGoogle Scholar
  119. [119]
    Y. Noguchi, T. Fujiwara, K. Yoshimatsu and Y. Fukumori: “Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum”, J. Bacteriol., Vol. 181, (1999), pp. 2142–2147.PubMedGoogle Scholar
  120. [120]
    W.F. Guerini and R.P. Blakemore: “Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum”, Appl. Environ. Microbiol., Vol. 58, (1992), pp. 1102–1109.Google Scholar
  121. [121]
    R.B. Frankel, G. Papaefthymiou, R.P. O’Brien and W. O’Brien: “Fe3O4 precipitation in magnetotactic bacteria”, Biochim. Biophys., Vol. 763, (1983), pp. 147–159.Google Scholar
  122. [122]
    A. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J.M. Plitzko and D. Schüler: “An acid protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria”, Nature, Vol. 440, (2006), pp. 110–114.PubMedCrossRefGoogle Scholar
  123. [123]
    U. Lins and M. Farina: “Magnetosome chain arrangement and stability in magnetotactic cocci”, Antonie van Leeuwenhoek, Vol. 85, (2004), pp. 335–341.PubMedCrossRefGoogle Scholar
  124. [124]
    S. Schübbe, M. Kube, A. Scheffel, C. Wawer, U. Heyen, A. Meyerdierks, M.H. Madkour, F. Mayer, R. Reinhardt and D. Schüler: “Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island”, J. Bacteriol., Vol. 185, (2003), pp. 5779–5790.PubMedCrossRefGoogle Scholar
  125. [125]
    T. Matsunaga, Y. Okamura, Y. Fukuda, A.T. Wahyudi, Y. Murase and H. Takeyama: “Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum spec”, DNA Res., Vol. 12, (2005), pp. 157–166.PubMedCrossRefGoogle Scholar
  126. [126]
    Y. Fukuda, Y. Okamura, H. Takeyama and T. Matsunaga: “Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed”, FEBS Lett., Vol. 580, (2006), pp. 801–812.PubMedCrossRefGoogle Scholar
  127. [127]
    U. Lins, MR. McCartney, M. Farina, R.B. Frankel and P.R. Buseck: “Habits of magnetosome crystals in coccoid magnetotactic bacteria”, Appl. Environ. Microbiol., Vol. 71, (2005), pp. 4902–4905.PubMedCrossRefGoogle Scholar
  128. [128]
    E.V. Ariskina: “Magnetic inclusions in prokaryotic cells”, Microbiology, Vol. 72, (2003), pp. 251–258.CrossRefGoogle Scholar
  129. [129]
    A. Poiata, D.E. Creanga and V.V. Morariu: “Life in zero magnetic field. V. E. coli resistance to antibiotics”, Electromagnet. Biol. Med., Vol. 22, (2003), pp. 171–182.CrossRefGoogle Scholar
  130. [130]
    D.E. Creanga, A. Poiata, V.V. Morariu and P. Tupu: “Zero-magnetic field effect in pathogen bacteria”, J. Magnet. Magnetic Mat., Vol. 272–276, (2004), pp. 2442–2444. DOI: 10.1016/j.jmmm.2003.12.853CrossRefGoogle Scholar
  131. [131]
    N.P. Lekhtlaan-Tynisson, E.B. Shaposhnikova and V.E. Kholmogorov: “The effect of the extremely weak field on the cultures of bacteria Escherichia coli and Staphylococcus aureus”, Biofizika, Vol. 49, (2004), pp. 519–523.PubMedGoogle Scholar
  132. [132]
    L.Y. Berzhanskaya, V. Berzhanskii, O. Beloplotova, T. Pilnikova and T. Metlyaev: “Bioluminescent activity of bacteria as an indicator of geomagnetic perturbations”, Biofizika, Vol. 40, (1995), pp. 778–781.Google Scholar
  133. [133]
    M.T. Marron, E.M. Goodman and B. Greenebaum: “Effects of weak electromagnetic fields on Physarum polycephalum: mitotic delay in heterokaryons and decreased respiration”, Experientia, Vol. 34, (1978), pp. 589–591.CrossRefGoogle Scholar
  134. [134]
    P. Nagy and G. Fischl: “Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi”, Bioelectromagnetics, Vol. 25, (2004), pp. 316–318.PubMedCrossRefGoogle Scholar
  135. [135]
    K. Nakamura, K. Okuno, T. Ano and M. Shoda: “Effect of high magnetic field on growth of Bacillus subtilis measured in a newly developed superconducting magnetic biosystem”, Bioelectrochem. Bioenerg., Vol. 43, (1997), pp. 123–128.CrossRefGoogle Scholar
  136. [136]
    W. Gao, Y. Liu, J. Zhou and H. Pan: “Effects of a strong static magnetic field on bacterium Shewanella oneidensis: An assessment by using whole genome microarray”, Bioelectromagnetics, Vol. 26, (2005), pp. 558–563.PubMedCrossRefGoogle Scholar
  137. [137]
    A.V. Makarevich: “Effect of magnetic fields of magnetoplastics on the growth of microorganisms”, Biofizika, Vol. 44, (1999), pp. 70–74.Google Scholar
  138. [138]
    S.G. Berk, S. Srikanth, S.M. Mahajan and C.A. Ventrice: “Static uniform magnetic fields and amoebae”, Bioelectromagnetics, Vol. 18, (1997), pp. 81–84.PubMedCrossRefGoogle Scholar
  139. [139]
    G.C. Kimball: “The growth of yeast in a magnetic field”, J. Bacteriol., Vol. 35, (1938), pp. 109–122.PubMedGoogle Scholar
  140. [140]
    P. Nagy: “The effect of low inductivity static magnetic field on some plant pathogenic fungi”, J. Centr. Eur. Agricult., Vol. 6, (2005), pp. 167–171.Google Scholar
  141. [141]
    S.S. Singh, S.P. Tiwari, J. Abraham, S. Rai and A.K. Rai: “Magnetobiological effects on a cyanobacterium, Anabaena doliolum”, Electro-Magnetobiol., Vol. 13, (1994), pp. 227–235.Google Scholar
  142. [142]
    E. Aarholt, E.A. Flinn and C.W. Smith: “Effects of low-frequency magnetic fields on bacterial growth rate”, Phys. Med. Biol., Vol. 26, (1981), pp. 613–621.PubMedCrossRefGoogle Scholar
  143. [143]
    C. Ramon, J.T. Martin and M.R. Powell: “Low-level, magnetic-field-induced growth modification on Bacillus subtilis”, Biolelectromagnetics, Vol. 8, (1987), pp. 275–282.CrossRefGoogle Scholar
  144. [144]
    R.L. Moore: “Biological effects of magnetic fields: studies with microorganisms”, Can. J. Microbiol., Vol. 25, (1979), pp. 1145–1151.PubMedCrossRefGoogle Scholar
  145. [145]
    B. Del Re, F. Bersani, C. Agostini, P. Mesirca and G. Giorgi: “Various effects on transposition activity and survival of Escherichia coli cells due to different ELF-MF signals”, Radiat. Environ. Biophys., Vol. 43, (2004), pp. 265–270.PubMedCrossRefGoogle Scholar
  146. [146]
    L. Fojt, L. Strasak, V. Vetterl and J. Smarda: “Comparison of the low-frequency magnetic field on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus”, Bioelectrochemistry, Vol. 63, (2004), pp. 337–341.PubMedCrossRefGoogle Scholar
  147. [147]
    L.E. Dihel, J. Smith-Sonneborn C.R. Middaugh: “Effects of extremely low frequency electromagnetic field on the cell division rate and plasma membrane of Paramecium tetraurelia”, Biolelectromagnetics, Vol. 6, (1985), pp. 61–71.CrossRefGoogle Scholar
  148. [148]
    M.T. Marron, E.M. Goodman and B. Greenebaum: “Mitotic delay in the slime mould Physarum polycephalum induced by low intensity 60 and 75 Hz electromagnetic fields”, Nature, Vol. 254, (1975), pp. 66–67.PubMedCrossRefGoogle Scholar
  149. [149]
    E.M. Goodman, B. Greenebaum and M.T. Marron: “Effects of extremely low frequency electromagnetic fields on Physarum polycephalum”, Rad. Res., Vol. 66, (1976), pp. 531–540.CrossRefGoogle Scholar
  150. [150]
    E.M. Goodman, B. Greenebaum and M.T. Marron: “Bioeffects of extremely low frequency electromagnetic fields: variation with intensity, waveform, and individual or combined electric and magnetic fields”, Rad. Res., Vol. 78, (1979), pp. 485–501.CrossRefGoogle Scholar
  151. [151]
    M. Li, J.H. Qu and Y.Z. Peng: “Sterilization of Escherichia coli cells by the application of pulsed magnetic field”, J. Environ Sci., Vol. 16, (2004), pp. 348–358.Google Scholar
  152. [152]
    B. Greenebaum, E.M. Goodman and M.T. Marron: “Magnetic field effects on mitotic cycle length in Physarum”, Eur. J. Cell. Biol., Vol. 27, (1982), pp. 156–160.PubMedGoogle Scholar
  153. [153]
    P.A. Williams, R.J. Ingebretsen and R.J. Dawson: “14.6 mT ELF magnetic field exposure yields no DNA breaks in model system Salmonella, but provides evidence of heat stress protection”, Bioelectromagnetics, Vol. 27, (2006), pp. 445–450.PubMedCrossRefGoogle Scholar
  154. [154]
    A. Mahdi, P.A. Gowland, P. Mansfield, R.E. Coupland and R.G. Lloyd: “The effect of static 3.0 and 0.5 T magnetic fields and the echoplanar imaging experiment at 0.5 T on E. coli”, Br. J. Radiol., Vol. 67, (1994), pp. 983–987.PubMedCrossRefGoogle Scholar
  155. [155]
    B. Del Re, F. Garoia, P. Mersica, C. Agostini, F. Bersani and G. Giorgi: “Extremely low frequency magnetic fields affect transposition activity in Escherichia coli”, Radiat. Environ. Biophys., Vol. 42, (2003), pp. 113–118.PubMedCrossRefGoogle Scholar
  156. [156]
    K.C. Chow and W.L. Tung: “Magnetic field exposure enhances DNA repair through the induction of DnaK/J synthesis”, FEBS Lett., Vol. 478, (2000b), pp. 133–136.PubMedCrossRefGoogle Scholar
  157. [157]
    K.C. Chow and W.L. Tung: “Magnetic field exposure stimulates transposition through the induction of DnaK/J Synthesis”, Biochem. Biophys. Res. Comm., Vol. 270, (2000a), pp. 745–748.PubMedCrossRefGoogle Scholar
  158. [158]
    F.L. Tabrah, H.F. Mower, S. Batkin and P.B. Greenwood: “Enhanced mutagenic effect of a 60 Hz time-varying magnetic field on numbers of azide-induced TA100 revertant colonies”, Bioelectromagnetics, Vol. 15, (1994), pp. 85–93.PubMedCrossRefGoogle Scholar
  159. [159]
    A. Markkanen, J. Juutilainen, S. Lang, J. Pelkonen, T. Rytömaa and J. Naarala: “Effects of 50 Hz magnetic field on cell cycle kinetics and colony forming ability of budding yeast exposed to ultraviolet radiation”, Bioelectromagnetics, Vol. 22, (2001), pp. 345–350.PubMedCrossRefGoogle Scholar
  160. [160]
    S. Horiuchi, Y. Ishizaki, K. Okuno, T. Ano and M. Shoda: “Drastic high magnetic field effect on suppression of Escherichia coli death”, Bioelectrochemistry, Vol. 53, (2001), pp. 149–153.PubMedCrossRefGoogle Scholar
  161. [161]
    E. Aarholt, E.A. Flinn and C. Smith: “Magnetic fields affect the lac operon system”, Phys. Med. Biol., Vol. 27, (1982), pp. 606–610.PubMedCrossRefGoogle Scholar
  162. [162]
    V.N. Binhi: “Interference of ion quantum states within a protein explains weak magnetic field’s effect on biosystems”, Electro-Magnetobiol., Vol. 16, (1997a), pp. 203–214.Google Scholar
  163. [163]
    V.N. Binhi: “Interference mechanism for some biological effects of pulsed magnetic fields”, Bioelectroch. Bioenerg., Vol. 45, (1998), pp. 73–81.CrossRefGoogle Scholar
  164. [164]
    P. Cairo, B. Greenebaum and E. Goodman: “Magnetic field exposure enhances mRNA expression of σ32 in E. coli”, J. Cell Biochem., Vol. 68, (1998), pp. 1–7.PubMedCrossRefGoogle Scholar
  165. [165]
    E.M. Goodman, B. Greenebaum and M.T. Marron: “Magnetic fields alter translation in Escherichia coli”, Bioelectromagnetics, Vol. 15, (1994), pp. 77–83.PubMedCrossRefGoogle Scholar
  166. [166]
    E.M. Goodman, B. Greenebaum and M.T. Marron: “Altered protein synthesis in a cell-free system exposed to a sinusoidal magnetic field”, Biochim. Biophys. Acta, Vol. 1202, (1993), pp. 107–112.PubMedGoogle Scholar
  167. [167]
    H. Lin, R. Goodman and A. Shirley-Henderson: “Specific region of the c-myc promoter is responsive to electric and magnetic fields”, J. Cell. Biochem., Vol. 54, (1994), pp. 281–288.PubMedCrossRefGoogle Scholar
  168. [168]
    H. Lin, M. Blank, K. Rossol-Haseroth and R. Goodman: “Regulating genes with electromagnetic response elements”, J. Cell. Biochem., Vol. 81, (2001), pp. 143–148.PubMedCrossRefGoogle Scholar
  169. [169]
    R. Goodman and M. Blank: “Insights into electromagnetic interaction mechanisms”, J. Cell. Physiol., Vol. 192, (2002), pp. 16–22.PubMedCrossRefGoogle Scholar
  170. [170]
    S. Nakasono and H. Saiki: “Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12”, Radiat. Res., Vol. 154, (2000), pp. 208–216.PubMedCrossRefGoogle Scholar
  171. [171]
    S. Nakasono, C. Laramee, H. Saiki and K.J. McLeod: “Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae”, Radiat. Res., Vol. 160, (2003), pp. 25–37.PubMedCrossRefGoogle Scholar
  172. [172]
    T. Utsunomiya, Y.-I. Yamane, M. Watanabe and K. Sasaki: “Stimulation of porphyrin production by application of an external magnetic field to a photosynthetic bacterium, Rhodobacter sphaeroides”, J. Biosci. Bioeng., Vol. 95, (2003), pp. 401–404.PubMedGoogle Scholar
  173. [173]
    S. Dutta, M. Verma and C. Blackman: “Frequency-dependent alterations in enolase activity in Escherichia coli caused by exposure to electric and magnetic fields”, Bioelectromagnetics, Vol. 15, (1994), pp. 377–383.PubMedCrossRefGoogle Scholar
  174. [174]
    A. Amaroli, F. Trielli, B. Bianco, S. Giordano, E. Moggia and M.U. Corrado: “Effects of a 50 Hz magnetic field on Dictyostelium discoideum (Protista)”, Bioelectromagnetics, Vol. 27, (2006), pp. 528–534.PubMedCrossRefGoogle Scholar
  175. [175]
    A.R. Liboff, S. Cherng, K.A. Jenrow and A. Bull: “Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields”, Bioelectromagnetics, Vol. 24, (2003), pp. 2–38.CrossRefGoogle Scholar
  176. [176]
    L.A. Shuvalova, M.V. Ostrovskaia, E.A. Sosumov and V.V. Lednev: “The effect of a weak magnetic field in the paramagnetic resonance mode on the rate of the calmodulin-dependent phosphorylation of myosin in solution”, Dokl. Akad. Nauk. SSSR, Vol. 317, (1991), pp. 227–230.PubMedGoogle Scholar
  177. [177]
    M.S. Markov and A.A. Pilla: “Static magnetic field modulation of myosin phosphorylation: calcium dependence in two enzyme preparations”, Bioelectrochem. Bioenerget., Vol. 35, (1994), pp. 57–61.CrossRefGoogle Scholar
  178. [178]
    M.S. Markov and A.A. Pilla: “Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: Calcium dependence”, Bioelectrochem. Bioenerg., Vol. 43, (1997), pp. 233–238.CrossRefGoogle Scholar
  179. [179]
    M.S. Markov, S. Wang and A.A. Pilla: “Effect of weak low-frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation”, Bioelectrochem. Bioenerg., Vol. 30, (1993), pp. 119–125.CrossRefGoogle Scholar
  180. [180]
    L.A. Coulton, A.T. Barker, J.E. van Lierup and M.P. Walsh MP: “The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain”, Bioelectromagnetics, Vol. 21, (2000), pp. 189–196.PubMedCrossRefGoogle Scholar
  181. [181]
    G. Cremer-Bartels, K. Krause, G. Mitoskas and D. Brodersen: “Magnetic fields of the earth as additional Zeitgeber for endogenous rhythms?”, Naturwiss., Vol. 71, (1984), pp. 567–574.PubMedCrossRefGoogle Scholar
  182. [182]
    D.L. Henshaw and R.J. Reiter: “Do magnetic fields cause increased risk of childhood leukemia via melatonin disruption?”, Bioelectromagnetics, Suppl. 7, (2005), pp. S86–S97.Google Scholar
  183. [183]
    R.J. Reiter: “Melatonin suppression by time-varying and time-invariant electromagnetic fields”, Adv. Chem. Series, Vol. 250, (1995), pp.451–465.CrossRefGoogle Scholar
  184. [184]
    R.J. Reiter: “Melatonin in the context of the reported bioeffects of environmental electromagnetic fields”, Bioelectrochem. Bioenerget., Vol. 47, (1998), pp.135–142.CrossRefGoogle Scholar
  185. [185]
    J. Stehle, S. Reuss, H. Schröder, M. Henscvhel and L. Vollrath: “Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil — role of pigmentation and sex”, Physiol. Behaviour, Vol. 44, (1988), pp. 91–94.CrossRefGoogle Scholar
  186. [186]
    A. Lerchl, A. Zachmann, A.M. Ather and R.J. Russel: “The effects of pulsing magnetic fields on pineal melatonin synthesis in a teleost fish (brook trout, Salvelinus fontinalis)”, Neurosci. Lett., Vol. 256, (1998), pp.171–173.PubMedCrossRefGoogle Scholar
  187. [187]
    S. Reuss and P. Semm: “Effects of an earth-strength magnetic field on pineal melatonin synthesis in pigeons”, Naturwissenschaften, Vol. 74, (1987), pp. 38–39.PubMedCrossRefGoogle Scholar
  188. [188]
    M. Blank and L. Soo: “The threshold for Na, K-ATPase stimulation by electromagnetic fields”, Bioelectrochem. Bioenerg., Vol. 40, (1996), pp. 63–65.CrossRefGoogle Scholar
  189. [189]
    M. Feychting and A. Ahlbom: “Magnetic fields and cancer in children residing near Swedish high-voltage power lines”, Am. J. Epidemiol., Vol. 138, (1993), pp. 467–481.PubMedGoogle Scholar
  190. [190]
    W. Haberditzl: “Enzyme activity in high magnetic fields”, Nature, Vol. 213, (1967), pp. 72–73.CrossRefGoogle Scholar
  191. [191]
    G. Akoyunoglou: “Effect of a magnetic field on carboxydismutase”, Nature, Vol. 202, (1964), 452–454.PubMedCrossRefGoogle Scholar
  192. [192]
    E.S. Cook and M.J. Smith: “Increase of trypsin activity”, In: M.F. Barnothy (Ed.): Biological effects of magnetic fields”, Plenum Press, New York London, 1964, pp. 246–254.Google Scholar
  193. [193]
    J.M. Mullins, L.M. Penafiel, J. Juutilainen and T.A. Litovitz: “Dose-response of electromagnetic field-enhanced ornithine decarboxylase activity”, Bioelectrochem. Bioenerg., Vol. 48, (1999), pp. 193–199.PubMedCrossRefGoogle Scholar
  194. [194]
    B. Nossol, G. Buse and J. Silny: “Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase”, Bioelectromagnetics, Vol. 14, (1993), pp. 361–372.PubMedCrossRefGoogle Scholar
  195. [195]
    S.I. Aksenov, A.A. Bulychev, T.I. Grunina and V.B. Turovetskii: “Effect of a lowfrequency magnetic field on esterase activity and change in pH in wheat germ during swelling of wheat seeds”, Biofizika, Vol. 45, (2000), pp. 737–745.PubMedGoogle Scholar
  196. [196]
    M. Portaccio, P. De Luca, D. Durante, V. Grano, S. Rossi, U. Bencivenga, M. Lepore and D.G. Mita: “Modulation of the catalytic activity of free and immobilized peroxydase by extremely low frequency electromagnetic fields: dependence on frequency”, Bioelectromagnetics, Vol. 26, (2005), pp. 145–152.PubMedCrossRefGoogle Scholar
  197. [197]
    R. Goodman and M. Blank: “Magnetic field stress induces expression of hsp70”, Cell Stress Chaperon., Vol. 3, (1998), pp. 79–88.CrossRefGoogle Scholar
  198. [198]
    D.N. Russel and S.J. Webb: “Metabolic response of Danaüs archippus and Saccharomyces cerevisiae to weak oscillatory magnetic fields”, Int. J. Biometereol., Vol. 25, (1981), pp. 257–262.CrossRefGoogle Scholar
  199. [199]
    C. Lei and H. Berg: “Electromagnetic window effects on proliferation rate of Corynebacterium glutamicum”, Bioelectrochem. Bioenerg., Vol. 45, (1998), pp. 261–265.CrossRefGoogle Scholar
  200. [200]
    M. Hirano, A. Ohta and K. Abe: “Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis”, J. Ferment. Bioeng., Vol. 86, (1998), pp. 313–316.CrossRefGoogle Scholar
  201. [201]
    M.T. Marron, E.M. Goodman, B. Greenebaum and P. Tipnis: “Effects of sinusoidal 60-Hz electric and magnetic fields on ATP and oxygen levels in the slime mold, Physarum polycephalum”, Bioelectromagnetics, Vol. 7, (1986), pp. 307–314.PubMedCrossRefGoogle Scholar
  202. [202]
    F.L. Tabrah, D.L. Guernsey, Chou S.-C. and S. Batkin: “Effect of alternating magnetic fields (60-100 Gauss, 60 Hz) on Tetrahymena pyriformis”, J. Life Sci., Vol. 8, (1978), pp. 73–77.Google Scholar
  203. [203]
    E. Wittekind, D. Broers, G. Kraepelin and I. Lamprecht: “Influence of non-thermic AC magnetic fields on spore germination in a dimorphic fungus”, Rad. Environ. Biophys., Vol. 29, (1990), pp. 143–152.CrossRefGoogle Scholar
  204. [204]
    D. Broers, G. Kraepelin, I. Lamprecht and O. Schulz: “Mycotypha Africana in lowlevel athermic ELF magnetic fields. Changes in growth parameters”, Bioelectrochem. Bioenerget., Vol. 27, (1992), pp. 281–291.CrossRefGoogle Scholar
  205. [205]
    R. Hemmersbach, E. Becker and W. Stockem: “Influence of extremely low frequency electromagnetic fields on the swimming behavior of ciliates”, Bioelectromagnetics, Vol. 18, (1997), pp. 491–498.PubMedCrossRefGoogle Scholar
  206. [206]
    Y. Nakaoka, K. Shimizu, K. Hasegawa and T. Yamamoto: “Effect of a 60 Hz magnetic field on the behavior of Paramecium”, Bioelectromagnetics, Vol. 21, (2000) pp. 584–588.PubMedCrossRefGoogle Scholar
  207. [207]
    Y. Nakaoka, R. Takeda and K. Shimizu: “Orientation of Paramecium swimming in a DC magnetic field”, Bioelectromagnetics, Vol. 23, (2002), pp. 607–613.PubMedCrossRefGoogle Scholar
  208. [208]
    M. Kavaliers and K.P. Ossenkop: “Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium ions”, Brain Res., Vol. 379, (1986), pp. 30–38.PubMedCrossRefGoogle Scholar
  209. [209]
    M. Kavaliers and K.P. Ossenkop: “Calcium channel involvement in magnetic field inhibition of morphine-induced analgesia”, Naunyn Schmiedebergs Arch. Pharmacol., Vol. 336, (1987), pp. 308–315.PubMedCrossRefGoogle Scholar
  210. [210]
    M.P. Greenbaum: “An upper limit for the effect of 60 Hz magnetic fields on bioluminescence from the photobacterium Vibrio fischeri”, Biochem. Biophys. Res. Comm., Vol. 14, (1994), pp. 40–44.CrossRefGoogle Scholar
  211. [211]
    Y. Liu, Y. Yu and E. Weng: “Effects of extremely low frequency electromagnetic fields and its combined effect with lead on the luminescence of Vibrio qinghaiensis”, Chin. J. Appl. Environ. Biol., Vol. 10, (2004), pp. 667–670.Google Scholar
  212. [212]
    D.A. Bazylinski and B.M. Moskowitz: “Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance”, Rev. Mineral., Vol. 35, (1997), pp. 181–223.Google Scholar
  213. [213]
    C. Kissel, C. Laj, S. Clemens and P. Solheid: “Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea”, Marine Geol., Vol. 201, (2003), pp. 119–132.CrossRefGoogle Scholar
  214. [214]
    A. Kurazhkovskii, N.A. Kurazhkovskaya, B.I. Klain and V.G. Devyatkin: “Variations of biological productivity and magnetization of bottom deposits in large artificial reservoirs”, Dokl. Biol. Sci., Vol. 381, (2001), pp. 570–571.PubMedCrossRefGoogle Scholar
  215. [215]
    V.G. Devyatkin, B.I. Klain and P.A. Vainovskii: “Correlation of some characteristics of aquatic ecosystems with the activity of the geomagnetic field”, Water Resources, Vol. 23, (1996), pp. 298–303.Google Scholar
  216. [216]
    L. Holysz, M. Chibowski and E. Chibowski: “Time-dependent changes of zeta potential and other parameters of in situ calcium carbonate due to magnetic field treatment”, Colloids and Surfaces, Vol. 208, (2002), pp. 231–240.CrossRefGoogle Scholar
  217. [217]
    D.T. Beruto, R. Botter, F. Perfumo and S. Scaglione: “Interfacial effect of extremely low frequency electromagnetic fields (EM-ELF) on the vaporization step of carbon dioxide from aqueous solutions of body simulated fluid (SBF)”, Bioelectromagnetics, Vol. 24, (2003), pp. 251–261.PubMedCrossRefGoogle Scholar
  218. [218]
    C.H. Mullenax, Mullenax C.H., L.E. Baumann, E.A. Kihn, W.E. Campbell and L.R. McDowell: “Global synchrony in biospheric variations and influence on soil pH”, Commun. Soil Sci. Plan., Vol. 32, (2001), pp. 2631–2661.CrossRefGoogle Scholar
  219. [219]
    Y. Gallet, A. Genevey and F. Fluteau: “Does Earth’s magnetic field secular variation control centennial climate change?”, Earth Planet. Sci. Lett., Vol. 236, (2005), 339–347.CrossRefGoogle Scholar
  220. [220]
    A. Boetius: “Deep sea research: anaerobic oxidation of methane by microbial symbiosis”, BIOspektrum, Vol. 7 (2001), pp. 536–538.Google Scholar
  221. [221]
    H. Elderfield: “Climate change: Carbonate mysteries”, Science, Vol. 296 (2002), 1618–1621.PubMedCrossRefGoogle Scholar
  222. [222]
    P.A. del Giorgio and C.M. Duarte: “Respiration in the open ocean”, Nature, Vol. 420 (2002), 379–384.PubMedCrossRefGoogle Scholar
  223. [223]
    D. Bloch and R. Georges: “New method for the determination of exchange interactions”, Phys. Rev. Lett., Vol. 20, (1968), pp. 1240–1241.CrossRefGoogle Scholar
  224. [224]
    C.B. Grissom: “Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination”, Chem. Rev., Vol. 95, (1995), pp. 3–24.CrossRefGoogle Scholar
  225. [225]
    J.C. Scaiano, F.L. Cozens and J. McLean: “Model for the rationalization of magnetic field effects in vivo. Application of the radical-pair mechanism to biological systems”, Photochem. Photobiol., Vol. 59, (1994), pp. 585–589.PubMedGoogle Scholar
  226. [226]
    R.K. Adair: “Effects of very weak magnetic fields on radical pair reformation”, Bioelectromagnetics, Vol. 20, (1999), pp. 255–263.PubMedCrossRefGoogle Scholar
  227. [227]
    N. Mohtat, FL. Cozens, T. Hancock-Chen, JC. Scaiano, J. McLean and J. Kim: “Magnetic field effects on the behaviour of radicals in protein and DNA environments”, Photochem. Photobiol., Vol. 67, (1998), pp. 111–118.PubMedCrossRefGoogle Scholar
  228. [228]
    B. Brocklehurst: “Free radical mechanism for the effects of environmental electromagnetic fields on biological system”, Int. J. Radiat. Biol., Vol. 69, (1996), pp. 3–24.PubMedCrossRefGoogle Scholar
  229. [229]
    C.R. Timmel, U. Till, B. Brocklehurst, K.A. McLauchlan and P.J. Hore: “Effects of weak magnetic field on free radical recombination reactions”, Mol. Phys., Vol. 95, (1998), pp. 71–89.CrossRefGoogle Scholar
  230. [230]
    D.E. Benson, C.B. Grissom, G.L. Burns and S.F. Mohammad: “Magnetic field enhancement of antibiotic activity in biofilm forming Pseudomonas aeruginosa”, ASAI J., Vol. 40, (1994), pp. M371–M376.CrossRefGoogle Scholar
  231. [231]
    A.J. Hoff, H. Rademaker, R. van Grondelle and L.N. Duysens: “On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria”, Biochim. Biophys. Acta, Vol. 460, (1977), pp. 547–554.PubMedCrossRefGoogle Scholar
  232. [232]
    S.G. Boxer, C.E.D. Chidsey and M.G. Roelofs: “Dependence of the yield of a radical-pair reaction in the solid state on orientation in a magnetic field”, J. Am. Chem. Soc., Vol. 104, (1982), pp. 2674–2674.CrossRefGoogle Scholar
  233. [233]
    R.E. Blankenship, T.J. Schaafsma and W.W. Parson: “Magnetic field effects on radical pair intermediates in bacterial photosynthesis”, Biochim. Biophys. Acta, Vol. 461, (1977), pp. 297–305.PubMedCrossRefGoogle Scholar
  234. [234]
    V.M. Voznyak, I.B. Ganago, A.A. Moskalenko and E.I. Elfimov: “Magnetic field-induced fluorescence changes in chlorophyll-proteins enriched with P-700”, Biochim. Biophys. Acta, Vol. 592, (1980), pp. 364–368.PubMedCrossRefGoogle Scholar
  235. [235]
    A. Sonneveld, L.N.M. Duysens and A. Moerdijk: “Magnetic field-induced increase in chlorophyll a delayed fluorescence of photosystem II: a 100-to 200-ns component between 4.2 and 300 K”, Proc. Natl. Acad. Sci. USA, Vol. 77, (1980), pp. 5889–5893.PubMedCrossRefGoogle Scholar
  236. [236]
    A. Sonneveld, L.N.M. Duysens and A. Moerdijk: “Sub-microsecond chlorophyll a delayed fluorescence from photosystem I. Magnetic field-induced increase of the emission yield”, Biochim. Biophys. Acta, Vol. 12, (1981), pp. 39–49.Google Scholar
  237. [237]
    Y. Liu, R. Edge, K. Henbest, C.R. Timmel, P.J. Hore and P. Gast: “Magnetic field effect on singlet oxygen production in a biochemical system”, Chem. Comm., Vol. 14, (2005), pp. 174–176.CrossRefGoogle Scholar
  238. [238]
    P. Waliszewski, R. Skwarek, L. Jeromin and H. Manikowski: “On the mitochondrial aspect of reactive oxygen species action in external magnetic fields”, J. Photochem. Photobiol., Vol. 52, (1999), pp. 137–140.CrossRefGoogle Scholar
  239. [239]
    T.T. Harkins and C.B. Grissom: “Magnetic field effects on B12 ethanolamine ammonia lyase: evidence for a radical mechanism”, Science, Vol. 263, (1994), pp. 958–960.PubMedCrossRefGoogle Scholar
  240. [240]
    C. Eichwald and J. Walleczek: “Model for magnetic field effects on radical pair recombination in enzyme kinetics”, Biophys. J., Vol. 71, (1996), pp. 623–631.PubMedCrossRefGoogle Scholar
  241. [241]
    A.L. Dicarlo, M.T. Hargis, L.M. Penafiel and T.A. Litovitz: “Short-term magnetic field exposures (60 Hz) induce protection against ultraviolet radiation damage”, Int. J. Rad. Biol., Vol. 75, (1999), pp. 1541–1549.PubMedCrossRefGoogle Scholar
  242. [242]
    R.P. Mericle, L.W. Mericle and J.W. Campbell: “Modification of radiation damage by post treatment with homogenous magnetic fields”, Genetics, Vol. 50, (1964), pp. 268–269.Google Scholar
  243. [243]
    R.P. Mericle, L.W. Mericle and D.J. Montgomery: “Magnetic fields and ionizing radiation: Effects and interaction during germination and early seeding development”, Radiat Bot., Vol. 6, (1966), pp. 111–127.CrossRefGoogle Scholar
  244. [244]
    R.M. Klein and D.T. Klein: “Post-irradiation modulation of ionizing radiation damage to plants”, Bot. Rev., Vol. 37, (1971), pp. 397–436.CrossRefGoogle Scholar
  245. [245]
    J. Jajte, M. Zmyslony and E. Rajkowska: “Protective effect of melatonin and vitamin E against pro-oxidative action of iron ions and a static magnetic field”, Medycyna Pracy, Vol. 54, (2003), pp. 23–28.PubMedGoogle Scholar
  246. [246]
    A.R. Liboff: “Cyclotron resonance in membrane transport”, In: A. Chiabrera, C. Nicolini and H.P. Schwan (Eds.): Interaction between electromagnetic fields and cells, Plenum Press, London, 1985, pp. 281–296.Google Scholar
  247. [247]
    A.R. Liboff: “Geomagnetic cyclotron resonance in living cells”, Biol. Phys., Vol. 9, (1985b), pp. 99–102.CrossRefGoogle Scholar
  248. [248]
    S.D. Smith, B.R. McLeod, A.R. Liboff and K. Cooksey: “Calcium cyclotron resonance and diatom mobility”, Bioelectromagnetics, Vol. 8, (1987), pp. 215–227.PubMedCrossRefGoogle Scholar
  249. [249]
    S.D. Smith, B.R. McLeod and A.R. Liboff: “Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations”, Bioelectrochem. Bioenerg., Vol. 38, (1995), pp. 161–167.CrossRefGoogle Scholar
  250. [250]
    C.L.M. Bauréus Koch, M. Sommarin, B.R.R. Persson, L.G. Salford and J.L. Eberhardt: “Interaction between weak low frequency magnetic fields and cell membranes”, Bioelectromagnetics, Vol. 24, (2003), pp. 395–402.PubMedCrossRefGoogle Scholar
  251. [251]
    J. Sandweiss: “On the cyclotroc resonance model of ion transport”, Bioelectromagnetics, Vol. 11, (1990), pp. 203–205.PubMedCrossRefGoogle Scholar
  252. [252]
    C.H. Durney, C.K. Rushforth and A.A. Anderson: “Resonant ac-dc magnetic fields: calculated response”, Bioelectromagnetics, Vol. 9, (1988), pp. 315–336.PubMedCrossRefGoogle Scholar
  253. [253]
    A. Pazur, V. Rassadina, J. Dandler and J. Zoller: “Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance”, Biomagnet. Res. Technol., Vol. 4, (2006), pp. 1–12.CrossRefGoogle Scholar
  254. [254]
    W.O. Schumann: “Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist”, Z. Naturforsch., Vol. 7, (1952), pp. 149–154 (in German).Google Scholar
  255. [255]
    K. Birkeland: “The Norwegian Aurora Polaris Expedition” 1902–1903. Vol I: On the cause of magnetic storms and the origin of terrestrial magnetism, (1908), Christiana (Aschehoug), Leipzig, London, Paris.Google Scholar
  256. [256]
    M.N. Zhadin and E.E. Fesenko: “Ion cyclotron resonance in biomolecules”, Biomed. Sci., Vol. 1, (1990), pp. 245–250.PubMedGoogle Scholar
  257. [257]
    V.V. Lednev: “Possible mechanism for the influence of weak magnetic fields on biological systems”, Bioelectromagnetics, Vol. 12, (1991), pp. 71–75.PubMedCrossRefGoogle Scholar
  258. [258]
    R.K. Adair: “Constraints on biological effects of weak extremely-low-frequency electromagnetic fields”, Phys. Rev. A., Vol. 43, (1991), pp. 1039–1048.PubMedCrossRefGoogle Scholar
  259. [259]
    R.K. Adair: “Hypothetical biophysical mechanisms for the action of weak low frequency electromagnetic fields at the cellular level”, Radiat. Prot. Dosim., Vol. 72, (1997), pp. 271–278.Google Scholar
  260. [260]
    M.N. Zhadin, V.V. Novikov, F.S. Barnes and N.F. Pergola: “Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution”, Bioelectromagnetics, Vol. 19, (1998), pp. 41–45.PubMedCrossRefGoogle Scholar
  261. [261]
    A. Pazur: “Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltametry”, Biomagn. Res. Technol., Vol. 2, (2004), pp. 8–19.PubMedCrossRefGoogle Scholar
  262. [262]
    E. Del Giudice, M. Fleischmann, G. Preparata and G. Talpo: “On the “unreasonable” effects of ELF magnetic fileds upon a system of ions”, Bioelectromagnetics, Vol. 23, (2002), pp. 522–530.PubMedCrossRefGoogle Scholar
  263. [263]
    J.C. Weaver and R.D. Astumian: “Estimates for ELF effects: noise-based thresholds and the number of experimental conditions required for empirical searches”, Bioelectromagnetics (Suppl.), Vol. 1, (1992), pp. 119–138.CrossRefGoogle Scholar
  264. [264]
    A.R. Liboff: “Electric field ion cyclotron resonance”, Bioelectromagnetics, Vol. 18, (1997), pp. 85–87.PubMedCrossRefGoogle Scholar
  265. [265]
    I.Y. Belyaev, A.Y. Matronchik and Y.D. Alipov: “The effect of weak static magnetic and alternating magnetic fields on the genome conformational state of E. coli cells: The evidence for model of phase modulation of high frequency oscillations”, in: Charge and Field Effects in Biosystems — 4. M.J. (Ed.), 1994, World Scientific, Singapore, pp. 174–184.Google Scholar
  266. [266]
    A.R. Liboff, R.J. Rozek, M.L. Sherman, B.R. McLeod and S.D. Smith: “Calcium-45 ion cyclotron resonance in human lymphocytes”, J. Bioelectr., Vol. 6, (1987), pp. 13–22.Google Scholar
  267. [267]
    J.P. Blanchard and C.F. Blackman: “Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems”, Bioelectromagnetics, Vol. 15, (1994), pp. 217–238.PubMedCrossRefGoogle Scholar
  268. [268]
    M. Berden, A. Zrimec and I. Jerman: “New biological detection system for weak ELF magnetic fields and testing of the paramagnetic resonance model”, Electro-Magnetobiol., Vol. 20, (2001), p. 27.Google Scholar
  269. [269]
    V.N. Binhi: “The mechanism of magnetosensitive binding of ions by some proteins”, Biofizika, Vol. 42, (1997b), pp. 338–342.Google Scholar
  270. [270]
    E. Schrödinger: “Probability relations between seperated systems”, Cambridge Phil. Soc. Proc., Vol. 31, (1935), pp. 555–563.CrossRefGoogle Scholar
  271. [271]
    G. Preparata: Coherence in Matter, World Scientific, Singapore, 1995.Google Scholar
  272. [272]
    O.A. Ponomarev and E.E. Fesenko: “The properties of liquid water in electric and magnetic fields”, Biofizika, Vol. 45, (2000), pp. 389–398.PubMedGoogle Scholar
  273. [273]
    C.A. Chatzidimitriou-Dreismann and E.J. Braendas: “Proton delocalization and thermally activated quantum correlations in water: complex scaling and new experimental results”, Ber. Bunsen Ges., Vol. 95, (1991), pp. 263–272.Google Scholar
  274. [274]
    E. Del Giudice and G. Preparata: “A collective approach to the dynamics of water”, NATO ASI Series, Series C: Mat. Phys. Sci., Vol. 329, (1991), pp. 211–220.Google Scholar
  275. [275]
    E. Del Giudice and G. Preparata: “Coherent dynamics in water as a possible explanation of biological membranes formation”, J. Biol. Phys., Vol. 20, (1994), pp. 105–116.CrossRefGoogle Scholar
  276. [276]
    E.A. Donley, N.R. Claussen, S.T. Thompson and C.E. Wieman: “Atom-molecule coherence in a Bose-Einstein condensate”, Nature, Vol. 417, (2002), pp. 529–33.PubMedCrossRefGoogle Scholar
  277. [277]
    A.V. Avdeenkov, D.C.E. Bortolotti and J.L. Bohn: “Stability of fermionic Freshbach molecules in a Bose-Fermi mixture”, Phys. Rev. A: Atom. Mol. Opt. Phys., Vol. 74, (2006), pp. 012709-1–012709-6.Google Scholar
  278. [278]
    N.E. Mavromatos: “Quantum-mechanical coherence in cell microtubules: a realistic possibility?”, Bioelectrochem. Bioenerg., Vol. 48, (1999), pp. 273–284.PubMedCrossRefGoogle Scholar
  279. [279]
    E. Bieberich: “Probing quantum coherence in a biological system by means of DNA amplification”, BioSystems, Vol. 57, (2000), pp. 109–124.PubMedCrossRefGoogle Scholar
  280. [280]
    E.E. Fesenko, V.I. Popov, V.V. Novikov and S.S. Khutsian: “Water structure formation by weak magnetic fields and xenon. Electron microscopic analysis”, Biofizika, Vol. 47, (2002), pp. 389–394PubMedGoogle Scholar
  281. [281]
    D. Maratea and R.P. Blakemore: “Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum”, Int. J. Syst. Bacteriol., Vol. 31, (1981), pp. 452–455.CrossRefGoogle Scholar
  282. [282]
    T. Moench: “Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus”, Ant. van Leeuwenhoek, Vol. 54, (1988), pp. 483–496.CrossRefGoogle Scholar
  283. [283]
    R. Kawaguchi, J.G. Burgess, T. Sakaguchi, H. Takeyama, R.H. Thornholl and T. Matsunaga: “Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the δ-Proteobacteria”, FEMS Microbiol. Lett., Vol. 126, (1995), pp. 277–282.PubMedGoogle Scholar
  284. [284]
    H. Vali, O. Förster, G. Amarantidis and N. Petersen: “Magnetotactic bacteria and their magnetofossils in sediments”, Earth Planet. Sci. Lett., Vol. 86, (1987), pp. 389–400.CrossRefGoogle Scholar
  285. [285]
    A.J. Dean and D.A. Bazylinski: “Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis”, Curr. Microbiol., Vol. 39, (1999), pp. 219–225.PubMedCrossRefGoogle Scholar
  286. [286]
    M.R. Gretz, D.B. Folsom and R.M. Brown Jr.: “Cellulose biogenesis in bacteria and higher plants is disrupted by magnetic fields”, Naturwissenschaften, Vol. 76, (1989), pp. 380–383.PubMedCrossRefGoogle Scholar
  287. [287]
    R.R. Aslanian, S.V. Tul’skii, L.M. Pozharitskaya and E.A. Lapteva: “Inhibition of the germination of actinomycetes spores in a constant magnetic field”, Microbiologiya, Vol. 42, (1973), pp. 556–558.Google Scholar
  288. [288]
    J. Magrou and P. Manigault: “Physiologie vegetale: action du champ magnetique sur le developpement des tumours experimentales chez Pelargonium zonale”, C. R. Acad. Sci., Vol. 223, (1946), pp. 8–11 (in French).Google Scholar
  289. [289]
    J. Dobson, Z. Stewart and B. Martinac: “Preliminary evidence for weak magnetic field effects on mechanosensitive ion channel subconducting states in Escherichia coli”, Electromagnet. Biol. Med., Vol. 21, (2002), pp. 89–95.CrossRefGoogle Scholar
  290. [290]
    M.J. Stansell, W.D. Winters, R.H. Doe and B.K. Dart: “Increased antibiotic resistance of E. coli exposed to static magnetic fields”, Bioelectromagnetics, Vol. 22, (2001), pp. 129–137.PubMedCrossRefGoogle Scholar
  291. [291]
    S. Hughes, AJ. El Haj, J. Dobson and B. Martinac: “The influence of static magnetic fields on mechanosensitive ion channel activity in artificial liposomes”, Eur. Biophys. J., Vol. 34, (2005), pp. 461–468.PubMedCrossRefGoogle Scholar
  292. [292]
    M. Kohno, M. Yamazaki, I. Kimura and M. Wada: “Effect of static magnetic fields on bacteria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli”, Pathophysiology, Vol. 7, (2000), pp. 143–148.PubMedCrossRefGoogle Scholar
  293. [293]
    L. Potenza, L. Cucchiarini, E. Piatti, U. Angelini and M. Dach?: “Effects of high static magnetic field exposure on different DNAs”, Bioelectromagnetics, Vol. 25, (2004), pp. 352–355.PubMedCrossRefGoogle Scholar
  294. [294]
    G. Petracchi, A. Checcucci, O. Gambini and G. Falcone: “Studies on bacterial growth: II effects of physical perturbations on bacterial growth”, Gen. Microbiol., Vol. 15, (1967), pp. 189–196.Google Scholar
  295. [295]
    Z. Grosman, M. Kolar and M. Tesarikova: “Effects of static magnetic field on some pathogenic microorganisms”, Acta Universit. Palackianae Olomucensis Facultatis Medicae, Vol. 134, (1992), pp. 7–9.Google Scholar
  296. [296]
    H.G. Hedrick: “Inhibition of bacterial growth in homogeneous fields”, In: M.F. Barnothy (Ed.): Biological effects of magnetic fields, Plenum Press, New York, 1964, pp. 240–245.Google Scholar
  297. [297]
    M. Ikehata, T. Koana, Y. Suzuki, H. Shimizu and M. Nakagawa: “Mutagenicity and co-mutagenicity fields of static magetic fields detected by bacterial mutation assay”, Mutat. Res., Vol. 427, (1999), pp. 147–156.PubMedGoogle Scholar
  298. [298]
    K. Tsuchiya, K. Nakamura, K. Okuno, T. Ano and M. Shoda: “Effect of homogeneous and inhomogeneous high magnetic fields on the growth of Escherichia coli”, J. Ferment. Bioeng., Vol. 81, (1996), pp. 344–347.CrossRefGoogle Scholar
  299. [299]
    K. Tsuchiya, K. Okuno, T. Ano, K. Tanaka, H. Takahashi and M. Shoda: “High magnetic field enhances stationary phase-specific transcription activity of Escherichia coli”, Bioelectrochem. Bioenerget., Vol. 48, (1999), pp. 383–387.CrossRefGoogle Scholar
  300. [300]
    M. Okuda, K. Saito, T. Kamikado, K. Matsumoto, K. Okuno, K. Tsuchiya, T. Ano and M. Shoda: “New 7 T superconducting magnet system for bacterial cultivation”, Cryogenics, Vol. 35, (1995), pp. 41–47.CrossRefGoogle Scholar
  301. [301]
    K. Okuno, K. Tuchiya, T. Ano and M. Shoda: “Effect of super high magnetic field on growth of Escherichia coli under various medium compositions and temperatures”, J. Ferm. Bioeng., Vol. 75, (1993), pp. 103–106.CrossRefGoogle Scholar
  302. [302]
    W. Triampo, G. Doungchawee, D. Triampo, J. Wong-Ekkabut and I.-M. Tang: “Effects of static magnetic field on growth of leptospire, Leptospira interrogans serovar canicola: immunoreactivity and cell division”, J. Biosci. Bioeng., Vol. 98, (2004), pp. 182–186.PubMedGoogle Scholar
  303. [303]
    W. Thiemann and E. Wagner: “Die Wirkung eines homogenen Magnetfeldes auf das Wachstum von Micrococcus denitrificans”, Z. Naturforsch., Vol. 25b, (1970), pp. 1020–1023.Google Scholar
  304. [304]
    E.M. Teichmann, J.G. Hengstler, W.G. Schreiber, W. Akbari, H. Georgi, M. Hehn, I. Schiffer, F. Oesch, H.W. Spiess, M. Thelen: “Possible mutagenic effects of magnetic fields”, Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin, Vol. 172, (2000), pp. 934–939 (in German).PubMedCrossRefGoogle Scholar
  305. [305]
    E. Piatti, M.C. Albertini, W. Baffone, D. Fraternale, B. Citterio, M.P. Piacentini, M. Dacha, F. Vetrano and A. Accorsi: “Antibacterial effect of a magnetic field on Serratia marcescens and related virulence to Hordeum vulgare and Rubus fruticosus callus cells”, Comp. Biochem. Physiol. B Biochem. Mol. Biol., Vol. 132, (2002), pp. 359–365.PubMedCrossRefGoogle Scholar
  306. [306]
    V.F. Gerencser, M.F. Barnothy and J.M. Barnothy: “Inhibition of bacterial growth by magnetic fields”, Nature, Vol. 196, (1962), pp. 539–541.PubMedCrossRefGoogle Scholar
  307. [307]
    R.O. Becker: “The biological effects of magnetic fields — A survey”, Med. Biol. Eng. Comput., Vol. 1, (1963), pp. 293–303.Google Scholar
  308. [308]
    B. Piskorz-Bińczycka, J. Fiema and M. Nowak: “Effect of the magnetic field on the biological clock in Penicillium claviforme”, Act. Biol. Cracov. Ser. Bot., Vol. 45, (2003), pp. 111–116.Google Scholar
  309. [309]
    P. Ellaiah, K. Adinarayana and M. Sunitha: “Effect of magnetic field on the biosynthesis of neomycin by Streptomyces marinensis”, Pharmazie, Vol. 58, (2003), pp. 58–59.PubMedGoogle Scholar
  310. [310]
    D.M.S. Esquivel, H.G.P. Lins de Barros, M. Farina, P.H.A. Aragao and J. Danon: “Microorganisms magnetotactiques de la region de Rio de Janeiro”, Biol. Cell, Vol. 47, (1983), pp. 227–234.Google Scholar
  311. [311]
    D.M.S. Esquivel and H.G.P. Lins de Barros: “Motion of magnetotactic microorganisms”, J. Exp. Biol., Vol. 21, (1986), pp. 153–163.Google Scholar
  312. [312]
    M.W. Jennison: “The growth of yeasts and molds in a strong magnetic field”, J. Bacteriol., Vol. 33, (1937), pp. 15–16.Google Scholar
  313. [313]
    S. Hattori, M. Watanabe, T. Endo, H. Togii and K. Sasaki: “Effects of an external magnetic field on the sedimentation of activated sludge”, World J. Microbiol. Biotechnol., Vol. 17, (2001), pp. 279–285.CrossRefGoogle Scholar
  314. [314]
    J. Jung and S. Sofer: “Enhancement of phenol biodegradation by South magnetic field exposure”, J. Chem. Technol. Biotechnol., Vol. 70, (1997), pp. 299–303.CrossRefGoogle Scholar
  315. [315]
    J. Fiema and M. Filek: “Effect of magnetic fields on the growth of mycelium of Aspergillus giganteus mut. Alba”, Conferences materials and Proceedings, convention Polish Botanical Association, Gdańsk, Section 51, (1998), p. 137.Google Scholar
  316. [316]
    K.K. Sadauskas, A.Y. Lugauskas and A.I. Mikulskene: “Effects of constant and pulsating low-frequency magnetic field on microscopic fungi”, Mikologija i Fitopatologija, Vol. 21, (1987), pp. 160–163.Google Scholar
  317. [317]
    M.C. Albertini, A. Accorsi, B. Citterio, S. Burattini, M.P. Piacentini, F. Ugoccioni and E. Piatti: “Morphological and biochemical modifications induced by a static magnetic field on Fusarium culmorum”, Biochimie, Vol. 85, (2003) pp. 963–970.PubMedCrossRefGoogle Scholar
  318. [318]
    F.E. Van Nostran, R.J. Reynolds and H.G. Hedrick: “Effects of a high magnetic field at different osmotic pressures and temperatures on multiplication of Saccharomyces cerevisiae”, Appl. Microbiol., Vol. 15, (1967), pp. 561–563.PubMedGoogle Scholar
  319. [319]
    J.A. Malko, I. Constantinidis, D. Dillehay and W.A. Fajman: “Search for influence of 1.5 Tesla magnetic field on growth of yeast cells”, Bioelectromagnetics, Vol. 15, (1994), pp. 495–501.PubMedCrossRefGoogle Scholar
  320. [320]
    M.J. Ruiz-Gomez, M.I. Prieto-Barcia, E. Ristori-Bogajo and M. Martinez-Morillo: “Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae”, Bioelectrochemistry, Vol. 64, (2004), pp. 151–155.PubMedCrossRefGoogle Scholar
  321. [321]
    B. Schaarschmidt, L. Lamprecht and K. Müller: “Influence of a magnetic field on the UV-sensitivity in yeast”, Z. Naturforsch., Vol. 29c, (1974), pp. 447–448.Google Scholar
  322. [322]
    C. Chéveneau and G. Bohn: “De L’action du champ magnétique sur le Infusoires”, C. R. Acad. Sci., Vol. 136, (1903), pp. 1579–1580 (in French).Google Scholar
  323. [323]
    M.H. Halpern and J.H. van Dyke: “Very low magnetic fields: biological effects and their implications for space exploration”, Aerospace Med., 37, (1966), p. 281.Google Scholar
  324. [324]
    K. Lustigman and I.R. Isquith: “The enhanced lethality of Paramecium in dyes under the influence of magnetic fields”, Acta Protozool., Vol. 13, (1975), pp. 257–266.Google Scholar
  325. [325]
    M.S. Rosen and A.D. Rosen: “Magnetic field influence on Paramecium motility”, Life Sci., Vol. 46, (1990), pp. 1509–1515.PubMedCrossRefGoogle Scholar
  326. [326]
    K.B. Elahee and D. Poinapen: “Effects of static magnetic fields on growth of Paramecium caudatum”, Bioelectromagnetics, Vol. 27, (2006), pp. 26–34.PubMedCrossRefGoogle Scholar
  327. [327]
    F.A. Brown: “Responses of the planarium, Dugesia, and the protozoan, Paramecium, to very weak horizontal magnetic fields”, Biol. Bull., Vol. 123, (1962), pp. 264–281.CrossRefGoogle Scholar
  328. [328]
    A.B. Kogan and N.A. Tikhonova: “Effect of a constant magnetic field on the movement of Paramecia”, Biofizika, Vol. 10, (1965), pp. 292–296.PubMedGoogle Scholar
  329. [329]
    K. Guevorkian and J.M.Jr. Valles: “Aligning Paramecium caudatum with static magnetic fields”, Biophys. J., Vol. 90, (2006), pp. 3004–3011.PubMedCrossRefGoogle Scholar
  330. [330]
    A. Ripamonti, E.M. Etienne and R.B. Frankel: “Effect of homogeneous magnetic fields on response to toxic stimulation in Spirostomum ambiguum”, Bioelectromagnetics, Vol. 2, (1981), pp. 187–198.PubMedCrossRefGoogle Scholar
  331. [331]
    D. Genkov, A. Cvetkova and P. Atmadzov: “The effect of the constant magnetic field upon the growth and development of T. vaginalis”, Folia Med., Vol. 16, (1974), pp. 95–99.Google Scholar
  332. [332]
    I.Y. Belyaev and E.D. Alipov: “Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes”, Biochim. Biophys. Acta, Vol. 1526, (2001), pp. 269–276.PubMedGoogle Scholar
  333. [333]
    I.Y. Belyaev IY, Y.D. Alipov and A.Y. Matronchik: “Cell density dependent response of E. coli cells to weak ELF magnetic fields”, Bioelectromagnetics, Vol. 19, (1998), pp. 300–309.PubMedCrossRefGoogle Scholar
  334. [334]
    R. Mittenzwey, R. Süssmuth and W. Mei: “Effects of extremely low-frequency electromagnetic fields on bacteria — the question of co-stressing factor”, Bioelectrochem. Bioenerg., Vol. 40, (1996), pp. 21–27.CrossRefGoogle Scholar
  335. [335]
    S.V. Chizhov, Y.-Y. Sinyak, M.I. Shikina, S.I. Ukhanova and V.V. Krasnoshchekov: “Effect of a magnetic field on Escherichia coli”, Space Biol. Aerosp. Med., Vol. 9, (1975), pp. 42–48.Google Scholar
  336. [336]
    Y.N. Achkasova, K.D. Pyatkin, N.I. Bryugunova, T.A. Sarachan and L.V. Tyshkevich: “Very low frequency and small intensity electromagnetic and magnetic fields as an oecological factor”, J. Hyg. Epidemiol. Microbiol. Immunol., Vol. 22, (1978), pp. 415–420.PubMedGoogle Scholar
  337. [337]
    T. Aarthi, T. Leelapriya, P.T. Kalaichelvan, K.S. Dhilip and P.V. Sanker Narayan: “Application of weak sinusoidal magnetic field on Flavobacterium species in the treatment of paper mill effluent”, Electromag. Biol. Med., Vol. 23, (2004), pp. 215–227.CrossRefGoogle Scholar
  338. [338]
    Z.R. Alaverdyan, L.G. Akopyan, L.M. Charyan LM and S.N. Airapetyan: “Impact of magnetic fields on growth dynamics and acid formation in lactic acid bacteria”, Microbiology, Vol. 65, (1996), pp. 213–216.Google Scholar
  339. [339]
    M.L. Calderon-Miranda, G.V. Barbosa-Canovas and B.G. Swanson: “Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin”, Int. J. Food Microbiol., Vol. 51, (1999), pp. 19–30.PubMedCrossRefGoogle Scholar
  340. [340]
    S. Ramstad, C.M. Futsaether and A. Johnsson: “Effect of 50 Hz electric currents and magnetic fields on the prokaryote Propionibacterium acnes”, Bioelectromagnetics, Vol. 21, (2000), pp. 302–311.PubMedCrossRefGoogle Scholar
  341. [341]
    M. Mineta, R. Katada, T. Yamada, K. Nagasawa, K. Takahashi, T. Aburano and I. Yoshida: “Bacterial mutation in high magnetic fields and radiofrequency radiation.”, Nippon Igaku Hoshasen Gakkai Zasshi, Vol. 59, (1999), pp. 467–469 (in Japanese).PubMedGoogle Scholar
  342. [342]
    Y. Hamnerius, A. Rasmuson and B. Rasmuson: “Biological effects of high-frequency electromagnetic fields on Salmonella typhimurium and Drosophila melanogaster”, Bioelectromagnetics, Vol. 6, (1985), pp. 405–414.PubMedCrossRefGoogle Scholar
  343. [343]
    J. Staczek, A.A. Marino, L.B. Gilleland, A. Pizarro and H.E. Gilleland Jr.: “Low-frequency electromagnetic fields alter the replication cycle of MS2 bacteriophage”, Curr. Microbiol., Vol. 36, (1998), pp. 298–301.PubMedCrossRefGoogle Scholar
  344. [344]
    R. Ružič, N. Gogala and I. Jerman: “Sinusoidal magnetic fields: effects on growth and ergosterol content in mycorrhizal fungi”, Electro-Magnetobiol., Vol. 16, (1997), pp. 129–142.Google Scholar
  345. [345]
    D.D. Ager and J.A. Radul: “Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae”, Mut. Res., Vol. 283, (1992), 279–286.CrossRefGoogle Scholar
  346. [346]
    M.R. Pereira, L.G. Nutini, J.C. Fardon and E.S. Cook: “Cellular respiration in intermittent magnetic fields”, Proc. Soc. Exp. Biol. Med., Vol. 124, (1967), pp. 573–576.PubMedGoogle Scholar
  347. [347]
    M.E.J. Zapata, O.G. Moreno, F.E.J. Marquez: “Efectos de los campos magnéticos sobre el crecimiento de Saccharomyces cerevisiae”, Interciencia, Vol. 27, (2002), pp. 544–550 (in Spanish).Google Scholar
  348. [348]
    L. Bolognani, F. Francia, T. Venturelli and N. Volpi: “Fermentative activity of cold-stressed yeast and effect of electromagnetic pulsed field”, Electro-Magnetobiol., Vol. 11, (1992), pp. 11–17.Google Scholar
  349. [349]
    M.A. Rizk: “Possible control of sugarbeet pathogen Sclerotium rolfsii Sacc. by ELF amplitude modulated waves”, Pak. J. Biol. Sci., Vol. 6, (2003), pp. 80–85.CrossRefGoogle Scholar
  350. [350]
    E. Davies, C. Olliff, I. Wright, A. Woodward and D. Kell: “A weak pulsed magnetic field affects adenine nucleotide oscillations, and related parameters in aggregating Dictyostelium discoideum amoebae”, Bioelectrochem. Bioenerg., Vol. 48, (1999), pp. 149–162.PubMedCrossRefGoogle Scholar
  351. [351]
    S. Ravera, E. Repaci, A. Morelli, I.M. Pepe, R. Botter and D. Beruto: “Electromagnetic field of extremely low frequency decreased adenylate kinase activity in retinal rod outer segment membranes”, Bioelectrochemistry, Vol. 63, (2004), pp. 317–320.PubMedCrossRefGoogle Scholar
  352. [352]
    T. Gemishev and K Tsolova: “Effect of constant magnetic field on the quantity of organic acids in wheat plants”, Fisiol. Rast. (Sofia), Vol. 13, (1986), pp. 43–49.Google Scholar
  353. [353]
    S.I. Aksenov, T.Yu. Grunina and S.N. Goryachev: “Effect of low-frequency magnetic field on the imbibition of wheat seeds at different stages”, Biofizika, Vol. 46, (2001), pp. 1068–1073.Google Scholar
  354. [354]
    C.R. Timmel and K.B. Henbest: “A study of spin chemistry in weak magnetic fields”, Phil. Trans. R. Soc. London A, Vol. 362, (2004), pp. 2573–2589.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alexander Pazur
    • 1
    Email author
  • Christine Schimek
    • 2
  • Paul Galland
    • 3
  1. 1.Department of Biology ILudwig-Maximilian University MünchenMünchenGermany
  2. 2.Department of General Microbiology and Microbial GeneticsFriedrich-Schiller-University JenaJenaGermany
  3. 3.Faculty of BiologyPhilipps-University MarburgMarburgGermany

Personalised recommendations