Central European Journal of Biology

, Volume 2, Issue 1, pp 1–33 | Cite as

Antimicrobial peptides: an overview of a promising class of therapeutics

  • Andrea Giuliani
  • Giovanna Pirri
  • Silvia Fabiole Nicoletto
Review Article


Antibiotic resistance is increasing at a rate that far exceeds the pace of new development of drugs. Antimicrobial peptides, both synthetic and from natural sources, have raised interest as pathogens become resistant against conventional antibiotics. Indeed, one of the major strengths of this class of molecules is their ability to kill multidrug-resistant bacteria. Antimicrobial peptides are relatively small (6 to 100 aminoacids), amphipathic molecules of variable length, sequence and structure with activity against a wide range of microorganisms including bacteria, protozoa, yeast, fungi, viruses and even tumor cells. They usually act through relatively non-specific mechanisms resulting in membranolytic activity but they can also stimulate the innate immune response. Several peptides have already entered pre-clinical and clinical trials for the treatment of catheter site infections, cystic fibrosis, acne, wound healing and patients undergoing stem cell transplantation. We review the advantages of these molecules in clinical applications, their disadvantages including their low in vivo stability, high costs of production and the strategies for their discovery and optimization.


Antimicrobial peptides (AMPs) mode of action therapeutic use proteases stability dendrimeric peptides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Zasloff: “Antimicrobial peptides of multicellular organisms”, Nature, Vol. 415, (2002), pp. 389–395.PubMedCrossRefGoogle Scholar
  2. [2]
    H.G. Boman: “Peptide antibiotics and their role in innate immunity”, Annu. Rev. Immunol., Vol. 13, (1995), pp. 61–92.PubMedCrossRefGoogle Scholar
  3. [3]
    M. Wu, E. Maier, R. Benz and R.E.W. Hancock: “Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli”, Biochemistry, Vol. 38, (1999), pp. 7235–7242.PubMedCrossRefGoogle Scholar
  4. [4]
    R.M. Epand and H.J. Vogel: “Diversity of antimicrobial peptides and their mechanisms of action”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 11–28.PubMedCrossRefGoogle Scholar
  5. [5]
    W. van’t Hof, E.C.I. Veerman, E.J. Helmerhorst and A.V.N. Amerongen: “Antimicrobial peptides: properties and applicability”, Biol. Chem., Vol. 382, (2001), pp. 597–619.CrossRefGoogle Scholar
  6. [6]
    R.E.W. Hancock and R. Lehrer: “Cationic peptides: a new source of antibiotics”, Trends Biotechnol., Vol. 16, (1998), pp. 82–88.PubMedCrossRefGoogle Scholar
  7. [7]
    F.V. Mohammad, M. Noorwala, V.U. Ahmad and B. Sener: “Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale”, Planta Med., Vol 61, (1995), p. 94.PubMedCrossRefGoogle Scholar
  8. [8]
    S.B. Aley, M. Zimmerman, M. Hetsko, M.E. Selsted and F.D. Gillin: “Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides”, Infect. Immun, Vol. 62, (1994), pp. 5397–5403.PubMedGoogle Scholar
  9. [9]
    M.G. Scott, H. Yan and R.E.W. Hancock: “Biological properties of structurally related α-helical cationic antimicrobial peptides”, Infect. Immun., Vol. 67, (1999), pp. 2005–2009.PubMedGoogle Scholar
  10. [10]
    M.A. Baker, W. L. Maloy, M. Zasloff and L.S. Jacob: “Anticancer efficacy of magainin 2 and analogue peptides”, Cancer Res., Vol. 53, (1993), pp. 3052–3057.PubMedGoogle Scholar
  11. [11]
    R.L. Gallo, M. Ono, T. Povsic, C. Page, E. Eriksson, M. Klagsbrun and M. Bernfield: “Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds”, Proc. Natl. Acad. Sci. U.S.A, Vol. 91, (1994), pp. 11035–11039.PubMedCrossRefGoogle Scholar
  12. [12]
    T. Ganz: “Defensins and host defense”, Science, Vol. 286, (1999), pp. 420–421.PubMedCrossRefGoogle Scholar
  13. [13]
    V. Dhoplea, A. Krukemeyera and A. Ramamoorthy: “The human beta-defensin-3, an antibacterial peptide with multiple biological functions”, Biochim. Biophys. Acta, (2006), Vol. 1758, pp. 1499–1512.CrossRefGoogle Scholar
  14. [14]
    D. Yang, A. Biragyn, L.W. Kwak and J.J. Oppenheim: “Mammalian defensins in immunity: more than just microbicidal”, Trends Immun., Vol. 23, (2002), pp. 291–296.CrossRefGoogle Scholar
  15. [15]
    M.C. Territo, T. Ganz, M. E. Selsted and R. Lehrer: “Monocyte-chemotactic activity of defensins from human neutrophils”, J. Clin. Invest., Vol. 84, (1989), pp. 2017–2020.PubMedGoogle Scholar
  16. [16]
    H.J. Huang, C.R. Ross and F. Blecha: “Chemoattractant properties of PR-39, a neutrophil antibacterial peptide”, J. Leukoc. Biol., Vol. 61, (1997), pp. 624–629.PubMedGoogle Scholar
  17. [17]
    Y.V. Chaly, E.M. Paleolog, T.S. Kolesnikova, I.I. Tikhonov, E.V. Petratchenko and N.N. Voitenok: “Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells”, Eur. Cytokine Netw., Vol. 11, (2000), pp. 257–266.PubMedGoogle Scholar
  18. [18]
    S. Van Wetering, S.P. Mannesse-Lazeroms, J.H. Dijkman and P.S. Hiemstra: “Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production”, J. Leuok. Biol., Vol. 62, (1997), pp. 217–226.Google Scholar
  19. [19]
    D. Yang, O. Chertov, S.N. Bykovskaia, Q. Chen, M.J. Buffo, J. Shogan, M. Anderson, J.M. Schröder, J.M. Wang, O.M.Z. Howard and J.J. Oppenheim: “β-Defensins: Linking Innate and Adaptive Immunity Through Dendritic and T Cell CCR6”, Science, Vol. 286, (1999), pp. 525–528.PubMedCrossRefGoogle Scholar
  20. [20]
    B.P.H.J. Thomma, B.P.A. Cammue and K. Thevissen: “Plant defensins”, Planta, Vol. 216, (2002), pp. 193–202.PubMedCrossRefGoogle Scholar
  21. [21]
    U.H. Durr, U.S. Sudheendra and A. Ramamoorthy: “LL-37, the only human member of the cathelicidin family of antimicrobial peptides”, Biochim. Biophys. Acta-Biomembranes, Vol. 1758, (2006), pp. 1408–1425.CrossRefGoogle Scholar
  22. [22]
    M. Wachinger, A. Kleinschmidt, D. Winder, N. Von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle and R. Brack-Werner: “Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression”, J. Gen. Virol., Vol. 79, (1998), pp. 731–740.PubMedGoogle Scholar
  23. [23]
    Y. Chen, X. Xu, S. Hong, J. Chen, N. Liu, C. B. Underhill, K. Creswell and L. Zhang: “RGD-tachyplesin inhibits tumor growth”, Cancer Res., Vol. 61, (2001), pp. 2434–2438.PubMedGoogle Scholar
  24. [24]
    B.L. Kagan, M.E. Selsted, T. Ganz and R.I. Lehrer: “Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes”, Proc. Natl. Acad. Sci. U.S.A, Vol. 87, (1990), pp. 210–214.PubMedCrossRefGoogle Scholar
  25. [25]
    A.J. Moore, D.A. Devine and M.C. Bibby: “Preliminary experimental anticancer activity of cecropins”, Pept. Res, Vol. 7, (1994), pp. 265–269.PubMedGoogle Scholar
  26. [26]
    H.J. Vogel, D.J. Schibli, W. Jing, E.M. Lohmeier-Vogel, R.F. Epand and R.M. Epand: “Towards a structure-function analysis of bovine lactoferricin and related tryptophan and arginine-containing peptides”, Biochem. Cell Biol., Vol. 80, (2002), pp. 49–63.PubMedCrossRefGoogle Scholar
  27. [27]
    Y.C. Yoo, S. Watanabe, R. Watanabe, K. Hata, K. Shimazaki and I. Azuma: “Bovine lactoferrin and Lactoferricin inhibit tumor metastasis in mice”, Adv. Exp. Med. Biol., Vol. 443, (1998), pp. 285–291.PubMedGoogle Scholar
  28. [28]
    S.R. Dennison, M. Whittaker, F. Harris and D.A. Phoenix: “Anticancer α-Helical Peptides and Structure / Function Relationships Underpinning Their Interactions with Tumour Cell Membranes”, Curr. Protein Pept. Sci., Vol. 7, (2006), pp. 487–499.PubMedCrossRefGoogle Scholar
  29. [29]
    H. Schröder-Borm, R. Bakalova and J. Andrä: “The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine”, FEBS Lett., Vol. 579, (2005), pp. 6128–6134.PubMedCrossRefGoogle Scholar
  30. [30]
    N. Papo and Y. Shai: “Host defense peptides as new weapons in cancer treatment”, Cell. Mol. Life Sci., Vol. 62, (2005), pp. 784–790.PubMedCrossRefGoogle Scholar
  31. [31]
    J. Pardo, P. Perez-Galan, S. Gamen, I. Marzo, I. Monleon, A.A. Kaspar, S.A. Susin, G. Kroemer, A.M. Krensky, J. Naval and A. Anel: “A role of the mitochondrial apoptosis inducing factor in granulysin-induced apoptosis”, J. Immunol., Vol. 167, (2001), pp. 1222–1229.PubMedGoogle Scholar
  32. [32]
    T. Murakami, M. Niwa, F. Tokunaga, T. Miyata and S. Iwanaga: “Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes”, Chemotherapy, Vol. 37, (1991), pp. 327–334.PubMedCrossRefGoogle Scholar
  33. [33]
    M. Masuda, H. Nakashima, T. Ueda, H. Naba, R. Ikoma, A. Otaka Y. Terakawa, H. Tamamura, T. Ibutaka, T. Murakami, Y. Koyanagi, M. Waki, A. Matsumoto, N. Yamamoto, S. Funakoshi and N. Fuji: “A novel anti-HIV synthetic peptide T-22 ([Tyr5,12,Lys7]-polyphemusin II)”, Biochem. Biophys. Res. Commun., Vol. 189, (1992), pp. 845–850.PubMedCrossRefGoogle Scholar
  34. [34]
    M. Morimoto, H. Mori, T. Otake, N. Ueba, N. Kunita, M. Niwa, T. Murakami and S. Iwanaga: “Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro”, Chemotherapy, Vol. 37, (1991), pp. 206–211.PubMedGoogle Scholar
  35. [35]
    T. Murakami, T. Nakajima, Y. Koyanagi, K. Tachibana, N. Fujii, H. Tamamura, N. Yoshida, M. Waki, A. Matsumoto, O. Yoshie, T. Kishimoto, N. Yamamoto and T. Nagasawa: “A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection”, J. Exp. Med., Vol. 186, (1997), pp. 1389–1393.PubMedCrossRefGoogle Scholar
  36. [36]
    R.F. Epand, A. Ramamoorthy and R.M. Epand: “Membrane Lipid Composition and the Interaction of Pardaxin: The Role of Cholesterol”, Protein Pept. Lett., Vol. 13, (2006), pp. 1–5.PubMedCrossRefGoogle Scholar
  37. [37]
    F. Porcelli, B. Bethany, D.K. Lee, K.J. Hallock, A. Ramamoorthy and G. Veglia: “Structure and Orientation of Pardaxin Determined by NMR Experiments in Model Membranes”, J. Biol. Chem., Vol. 279, (2004), pp. 45815–45823.PubMedCrossRefGoogle Scholar
  38. [38]
    K.J. Hallock, D.K. Lee, J. Omnaas, H.I. Mosberg and A. Ramamoorthy: “Membrane Composition Determines Pardaxin’s Mechanism of Lipid Bilayer Disruption”, Biophys. J., Vol. 83, (2002), pp. 1004–1013.PubMedGoogle Scholar
  39. [39]
    F. Porcelli, B.A. Buck-Koehntop, S. Thennarasu, A. Ramamoorthy and G. Veglia: “Structures of the Dimeric and Monomeric Variants of Magainin Antimicrobial Peptides (MSI-78 and MSI-594) in Micelles and Bilayers, Determined by NMR Spectroscopy”, Biochemistry, Vol. 45, (2006), pp. 5793–5799.PubMedCrossRefGoogle Scholar
  40. [40]
    A. Mecke, D.K. Lee, A. Ramamoorthy, B.G. Orr and M.M.B. Holl: “Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78 in Lipid Bilayers”, Biophys. J., Vol. 89, (2005), pp. 4043–4050.PubMedCrossRefGoogle Scholar
  41. [41]
    S. Thennarasu, D.K. Lee, A. Tan, U.P. Kari and A. Ramamoorthy: “Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843”, Biochim. Biophys. Acta, Vol. 1711, (2005), pp. 49–58.PubMedCrossRefGoogle Scholar
  42. [42]
    A. Ramamoorthy, S. Thennarasu, A. Tan, D. Lee, C. Clayberger and A.M. Krensky: “Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin”, Biochim. Biophys. Acta, Vol. 1758, (2006), pp. 154–163.PubMedCrossRefGoogle Scholar
  43. [43]
    A. Ramamoorthy, S. Thennarasu, A. Tan, K. Gottipati, S. Sreekumar, D.L. Heyl, F.Y.P. An and C.E. Shelburne: “Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding”, Biochemistry, Vol. 45, (2006), pp. 6529–6540.PubMedCrossRefGoogle Scholar
  44. [44]
    S. Thennarasu, D.K. Lee, A. Poon, K.E. Kawulka, J.C. Vederas and A. Ramamoorthy: “Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A”, Chem. Phys. Lipids. Vol. 137, (2005), pp. 38–51.PubMedCrossRefGoogle Scholar
  45. [45]
    J.P. Powersand and R.E.W. Hancock: “The relationship between peptide structure and antibacterial activity”, Peptides, Vol. 24, (2003), pp. 1681–1691.CrossRefGoogle Scholar
  46. [46]
    R. Yeaman and N.Y. Yount: “Mechanisms of antimicrobial peptide action and resistance”, Pharmacol. Rev., Vol. 55, (2003), pp. 27–55.PubMedCrossRefGoogle Scholar
  47. [47]
    K. Matsuzaki: “Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 1–10.PubMedCrossRefGoogle Scholar
  48. [48]
    R.E.W. Hancock and D.S. Chapple: “Peptide antibiotics”, Antimicrob. Agents Chemother., Vol. 43, (1999), pp. 1317–1323.PubMedGoogle Scholar
  49. [49]
    R.E.W. Hancock: “Peptide antibiotics”, Lancet, Vol. 349, (1997), pp. 418–422.PubMedCrossRefGoogle Scholar
  50. [50]
    J.M. Sanderson: “Peptide-lipids interactions: insights and perspectives”, Org. Biomol. Chem., Vol.3, (2005), pp. 201–212.PubMedCrossRefGoogle Scholar
  51. [51]
    Y. Shai and Z. Oren: “From “carpet”mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides”, Peptides, Vol. 22, (2001), pp. 1629–1641.PubMedCrossRefGoogle Scholar
  52. [52]
    N. Sitaram and R. Nagaraj: “Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity”, Biochim. Biophys Acta, Vol. 1462, (1999), pp. 29–54.PubMedCrossRefGoogle Scholar
  53. [53]
    E. Breukink and B. de Kruijff: “The lantibiotic nisin, a special case or not?”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 223–234.PubMedCrossRefGoogle Scholar
  54. [54]
    R.I. Lehrer and T. Ganz: “Cathelicidins: a family of endogenous antimicrobial peptides”, Curr. Opin. Hematol., Vol. 9, (2002), pp. 18–22.PubMedCrossRefGoogle Scholar
  55. [55]
    M.S.P. Sansom: “Alamethicin and related peptaibols-model ion channels”, Eur. Biophys., Vol. 22, (1993), pp. 105–124.Google Scholar
  56. [56]
    L. Yang, T.A. Harroun, T.M. Weiss, L. Ding and H.W. Huang: “Barrel-stave model or toroidal model? A case study on melittin pores”, Biophys. J., (2001), Vol. 81, pp. 1475–1485.PubMedGoogle Scholar
  57. [57]
    L. Beven, O. Helluin, G. Molle, H. Duclohier and H. Wroblewski: “Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides”, Biochim. Biophys. Acta, Vol. 1421, (1999), pp. 53–63.PubMedCrossRefGoogle Scholar
  58. [58]
    L. Yang, T.M. Weiss, R.I. Lehrer and H.W. Huang: “Crystallization of antimicrobial pores in membranes: magainin and protegrin”, Biophys. J., Vol. 79, (2001), pp. 2002–2009.Google Scholar
  59. [59]
    K. Matsuzaki: “Magainins as paradigm for the mode of action of pore forming polypeptide”, Biochim. Biophys. Acta, Vol. 1376, (1998), pp. 391–400.PubMedGoogle Scholar
  60. [60]
    K. Matsuzaki, O. Murase, N. Fujii and K. Miyajima: “An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation”, Biochemistry, Vol. 35, (1996), pp. 11361–11368.PubMedCrossRefGoogle Scholar
  61. [61]
    B. Bechinger: “The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 157–183.PubMedCrossRefGoogle Scholar
  62. [62]
    R.A. Cruciani, J.L. Barker, S.R. Durell, G. Raghunathan, H.R. Guy, M. Zasloff and E.F Stanley: “Magainin 2: A natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes”, Eur. J. Pharmacol., Vol. 226, (1992), pp. 287–296.PubMedCrossRefGoogle Scholar
  63. [63]
    K.A. Brogden: “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?”, Nature Rev. Microb., Vol. 3, (2005), pp. 238–250.CrossRefGoogle Scholar
  64. [64]
    K.J. Hallock, D.K. Lee and A. Ramamoorthy: “MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain”, Biophys. J., Vol. 84, (2003), pp. 3052–3060.PubMedCrossRefGoogle Scholar
  65. [65]
    K.A. Henzler Wildman, D.K. Lee and A. Ramamoorthy: “Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37”, Biochemistry, Vol. 42, (2003), pp. 6545–6558.PubMedCrossRefGoogle Scholar
  66. [66]
    K.A. Henzler-Wildman, G.V. Martinez, M.F. Brown and A. Ramamoorthy: “Perturbation of the Hydrophobic Core of Lipid Bilayers by the Human Antimicrobial Peptide LL-37”, Biochemistry, Vol. 43, (2004), pp. 8459–8469.PubMedCrossRefGoogle Scholar
  67. [67]
    T. Ganz and R.I. Lehrer: “Defensins”, Pharmacol. Ther., Vol. 66, (1995), pp. 191–205.PubMedCrossRefGoogle Scholar
  68. [68]
    A. Rozek, C.L. Friedrich and R.E.W. Hancock: “Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles”, Biochemistry, Vol. 39, (2000), pp. 15765–15774.PubMedCrossRefGoogle Scholar
  69. [69]
    S. Vunnam, P. Juvvadi and R.B. Merrifield: “Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine”, J. Pept. Res., Vol. 49, (1997), pp. 59–66.PubMedCrossRefGoogle Scholar
  70. [70]
    P. Casteels and P. Tempst: “Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity”, Biochem. Biophys. Res. Commun., Vol. 199, (1994), pp. 339–345.PubMedCrossRefGoogle Scholar
  71. [71]
    P. Bulet, L. Urge, S. Ohresser, C. Hetru and L. Otvös: “Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila”, Eur. J. Biochem., Vol. 238, (1996), pp. 64–69.PubMedCrossRefGoogle Scholar
  72. [72]
    Subbalakshmi and N. Sitaram: “Mechanism of antimicrobial action of indolicidin”, FEMS Microbiol. Lett., Vol. 160, (1998), pp. 91–96.PubMedCrossRefGoogle Scholar
  73. [73]
    A. Carlsson, P. Engström, E.T. Palva and H. Bennich: “Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription”, Infect. Immun., Vol. 59, (1991), pp. 3040–3045.PubMedGoogle Scholar
  74. [74]
    J. Oh, Y. Cajal, E.M. Skowronska, S. Belkin, J. Chen, T.K. Van Dyk, R.M. Sasse and M.K. Jain: “Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli”, Biochim. Biophys. Acta, Vol. 1463, (2000), pp. 43–54.PubMedCrossRefGoogle Scholar
  75. [75]
    V. Cabiaux, B. Agerberth, J. Johansson, F. Homblé, E. Goormaghtigh and J. M. Ruysschaert: “Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide”, Eur. J. Biochem., Vol. 224, (1994), pp. 1019–1027.PubMedCrossRefGoogle Scholar
  76. [76]
    H.G. Boman, B. Agerberth and A. Boman: “Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine”, Infect. Immun., Vol. 61, (1993), pp. 2978–2984.PubMedGoogle Scholar
  77. [77]
    C.B. Park, H. S. Kim and S.C. Kim: “Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell mem brane and inhibiting cellular functions”, Biochem. Biophys. Res. Commun., Vol. 244, (1998), pp. 253–257.PubMedCrossRefGoogle Scholar
  78. [78]
    B. Skerlavaj, D. Romeo and R. Gennaro: “Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins”, Infect. Immun., Vol. 58, (1990), pp. 3724–3730.PubMedGoogle Scholar
  79. [79]
    L. Otvos Jr., O. Insug, M.E. Rogers, P.J. Consolvo, B.A. Condie, S. Lovas, P. Bulet and M. Blaszczyk-Thurin: “Interaction between Heat Shock Proteins and Antimicrobial Peptides”, Biochemistry, Vol. 39, (2000), pp. 14150–14159.PubMedCrossRefGoogle Scholar
  80. [80]
    L.S. Chesnokova, S.V. Slepenkov and S.N. Witt: “The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK”, FEBS Lett., Vol. 565, (2004), pp. 65–69.PubMedCrossRefGoogle Scholar
  81. [81]
    O. Toke: “Antimicrobial Peptides: New Candidates in the Fight Against Bacterial Infections”, Pept. Sci., Vol. 80, (2005), pp. 717–735.Google Scholar
  82. [82]
    R.E.W. Hancock and H.G. Sahl: “Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies”, Nature Biotechnol, Vol. 24, (2006), pp. 1551–1557.CrossRefGoogle Scholar
  83. [83]
    M. Zasloff: “The Commercial Development of the Antimicrobial Peptide Pexiganan”, In: K. Lohner (Ed.): Development of Novel Antimicrobial Agents: Emerging Strategies, Horizon Scientific Press, Wymondham, UK, 2001, pp. 261–270.Google Scholar
  84. [84]
    H.M. Lamb and L.R. Wiseman: “Pexiganan Acetate”, Drugs, Vol. 56, (1998), pp. 1047–1052.PubMedCrossRefGoogle Scholar
  85. [85]
    A. Trotti, A. Garden, P. Warde, P. Symonds, C. Langer, R. Redman, T.F. Pajak, T.R. Fleming, M. Henke, J. Bourhis, D.I. Rosenthal, E. Junor, A. Cmelak, F. Sheehan, J. Pulliam, P. Devitt-Risse, H. Fuchs, M. Chambers, B. O’sullivan and K.K. Ang: “A multinational, randomized phase III trial of iseganan-HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy”, Int. J. Radiat. Oncol. Biol. Phys., Vol. 58, (2004), pp. 674–681.PubMedCrossRefGoogle Scholar
  86. [86]
    Y.J. Gordon, E.G. Romanowski and A.M. McDermott: “A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs”, Curr. Eye Res., Vol. 30, (2005), pp. 505–515.PubMedCrossRefGoogle Scholar
  87. [87]
    N. Markou, H. Apostolakos, C. Koumoudiou, M. Athanasiou, A. Koutsoukou, I. Alamanos and L. Gregorako: “Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients”, Crit. Care, Vol. 7, (2003), pp. 78–83.CrossRefGoogle Scholar
  88. [88]
    M.E. Falagas and S.K. Kasiakou: “Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections”, Clin. Infect. Dis., Vol. 40, (2005), pp. 1333–1341.PubMedCrossRefGoogle Scholar
  89. [89]
    A. Kubo, C.S. Lunde and I. Kubo: “Indole and (E)-2-hexenal, phytochemical potentiators of polymyxins against Pseudomonas aeruginosa and Escherichia coli”, Antimicrob. Agents. Chemother., Vol. 40, (1996), pp. 1438–1441.PubMedGoogle Scholar
  90. [90]
    S.P. Conway, M.N. Pond, A. Watson, C. Etherington, H.L. Robey and M.H. Goldman: “Intravenous colistin sulphometate in acute respiratory exacerbations in adult patients with cystic fibrosis”, Thorax, Vol. 52, (1997), pp. 987–993.PubMedCrossRefGoogle Scholar
  91. [91]
    A. Pini, A. Giuliani, C. Falciani, Y. Runci, C. Ricci, B. Lelli, M. Malossi, P. Neri, G.M. Rossolini and L. Bracci: “Antimicrobial Activity of Novel Dendrimeric Peptides Obtained by Phage Display Selection and Rational Modification”, Antimicrob. Agents Chemother., Vol. 49, (2005), pp. 2665–2672.PubMedCrossRefGoogle Scholar
  92. [92]
    K.H. Mayo, J. Haseman, E. Ilyina and B. Gray: “Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing proteinlike bactericidal and endotoxin neutralizing activities”, Biochim. Biophys. Acta, Vol. 1425, (1998), pp. 81–92.PubMedGoogle Scholar
  93. [93]
    P.H. Mygind, R.L. Fischer, K.M. Schnorr, M.T. Hansen, C.P. Sönksen, S. Ludvigsen, D. Raventós, S. Buskov, B. Christensen, L. De Maria, O. Taboureau, D. Yaver, S.G. Elvig-Jørgensen, M.V. Sørensen, B.E. Christensen, S. Kjærulff, N. Frimodt-Moller, R.I. Lehrer, M. Zasloff and H.-H. Kristensen: “Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus”, Nature, Vol. 437, (2005), pp. 975–980.PubMedCrossRefGoogle Scholar
  94. [94]
    M.M Welling, A. Paulusma-Annema, H.S. Balter, E.K. Pauwels and P.H. Nibbering: “Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations”, Eur. J. Nucl. Med., Vol. 24, (2004), pp. 292–301.Google Scholar
  95. [95]
    A. Giacometti, O. Cirioni, F. Barchiesi and G. Scalise: “In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics”, Diagn. Microbiol. Infect. Dis., Vol. 38, (2000), pp. 115–118.PubMedCrossRefGoogle Scholar
  96. [96]
    S.L. Haynie, G.A. Crum and B.A. Doele: “Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin”, Antimicrob. Agents Chemother. Vol. 39, (1995), pp. 301–307.PubMedGoogle Scholar
  97. [97]
    J.K. Ghosh, D. Shaool, P. Guillaud, L. Ciceron, D. Mazier, I. Kustanovich, Y. Shai and A. Mor: “Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis”, J. Biol. Chem., Vol. 272, (1997), pp. 31609–31616.PubMedCrossRefGoogle Scholar
  98. [98]
    I. Ahmad, W.R. Perkins, D.M. Lupan, M.E. Selsted and A.S. Janoff: “Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity”, Biochim. Biophys. Acta, Vol. 1237, (1995), pp. 109–114.PubMedCrossRefGoogle Scholar
  99. [99]
    R. Raqib, P. Sarker, P. Bergman, G. Ara, M. Lindh, D.A. Sack, K.M. Nasirul Islam, G.H. Gudmundsson, J. Andersson and B. Agerberth: “Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic.”, Proc. Natl. Acad. Sci., Vol. 103, (2006), pp. 9178–9183.PubMedCrossRefGoogle Scholar
  100. [100]
    S. Kim, S.S Kim, Y.J. Bang, S.J. Kim and B.J. Lee: “In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines”, Peptides, Vol. 24, (2003), pp. 945–953.PubMedCrossRefGoogle Scholar
  101. [101]
    S.A. Johnstone, K. Gelmon, L.D. Mayer, R.E. Hancock and M.B. Bally: “In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines”, Anticancer Drug. Res., Vol. 15, (2000), pp. 151–160.Google Scholar
  102. [102]
    C. Leuschner and W. Hansel: “Membrane Disrupting Lytic Peptides for Cancer Treatments”, Curr. Pharm. Design, Vol. 10, (2004), pp. 2299–2310.CrossRefGoogle Scholar
  103. [103]
    D. Winder, W.H. Gunzburg, V. Erfle and B. Salmons: “Expression of antimicrobial peptides has an antitumour effect in human cells”, Biochem. Biophys. Res. Commun., Vol. 242, (1998) pp. 608–612.PubMedCrossRefGoogle Scholar
  104. [104]
    A.K. Marr, W.J. Gooderham and R.E.W. Hancock: “Antibacterial peptides for therapeutic use: obstacles and realistic outlook”, Curr. Opin. Pharmacol., Vol. 6, (2006), pp. 468–472.PubMedCrossRefGoogle Scholar
  105. [105]
    C. Haught, G.D. Davis, R. Subramanian, K.W. Jackson and R.G. Harrison: “Recombinant Production and Purification of Novel Antisense Antimicrobial Peptide in Escherichia coli”, Biotech. Bioeng., Vol. 57, (1998), pp. 55–61.CrossRefGoogle Scholar
  106. [106]
    E.A. Groisman: “The ins and outs of virulence gene expression: Mg2+ as a regulatory signal”, Bioessays, Vol. 20, (1998), pp. 96–101.PubMedCrossRefGoogle Scholar
  107. [107]
    J.S. Gunn, S.S. Ryan, J.C. Van Velkinburgh, R.K. Ernst and S.I. Miller: “Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium”, Infect. Immun., Vol. 68, (2000), pp. 6139–6146.PubMedCrossRefGoogle Scholar
  108. [108]
    C. Friedrich, M.G. Scott, N. Karunaratne, H. Yan and R.E.W. Hancock: “Salt-resistant alpha-helical cationic antimicrobial peptides”, Antimicrob. Agents Chemother., Vol. 43, (1999), pp. 1542–1548.PubMedGoogle Scholar
  109. [109]
    G.G. Perron, M. Zasloff and G. Bell: “Experimental evolution of resistance to an antimicrobial peptide”, Proc. Biol. Sci., Vol. 273, (2006), pp. 251–256.PubMedCrossRefGoogle Scholar
  110. [110]
    O. Sørensen, T. Bratt, A.H. Johnsen, M.T. Madsen and N. Borregaard: “The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma”, J. Biol. Chem., Vol. 274, (1999), pp. 22445–22451.PubMedCrossRefGoogle Scholar
  111. [111]
    C. Adessi and C. Soto: “Converting a peptide into a drug: strategies to improve stability and bioavailability”, Curr. Med. Chem., Vol. 9, (2002), pp. 963–978.PubMedCrossRefGoogle Scholar
  112. [112]
    M. Goodman, C. Zapf and Y. Rew: “New reagents, reactions, and peptidomimetics for drug design”, Biopolymers, Vol. 60, (2001), pp. 229–245.PubMedCrossRefGoogle Scholar
  113. [113]
    A. Wiest, D. Grzegorski, B.W. Xu, C. Goulard, S. Rebuffat, D.J. Ebbole, B. Bodo and C. Kenerley: “Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase”, J. Biol. Chem., Vol. 277, (2002), pp. 20862–20868.PubMedCrossRefGoogle Scholar
  114. [114]
    A. Banerjee, A. Pramanik, S. Bhattacharjya and P. Balaram: “Omega amino acids in peptide design: incorporation into helices”, Biopolymers, Vol. 39, (1996), pp. 769–777.PubMedCrossRefGoogle Scholar
  115. [115]
    J.M. Ostresh, S.E. Blondelle, B. Dörner and R.A. Houghten: “Generation and use of nonsupported-bound peptide and peptidomimetic combinatorial libraries”, Methods Enzymol., Vol. 267, (1996), pp. 220–234.PubMedCrossRefGoogle Scholar
  116. [116]
    A. Wessolowski, M. Bienert and M. Dathe: “Antimicrobial activity of arginineand tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization”, J. Pept. Res., Vol. 64, (2004), pp. 159–169.PubMedCrossRefGoogle Scholar
  117. [117]
    D. Gimenez, C. Andreu, M. del Olmo, T. Varea, D. Diaz and G. Asensio: “The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity”, Bioorg. Med. Chem., Vol. 14, (2006), pp. 6971–6978.PubMedCrossRefGoogle Scholar
  118. [118]
    M. Dathe, J. Meyer, M. Beyermann, B. Maul, C. Hoischen and M. Bienert: “General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides”, Biochim. Biophys. Acta, Vol. 1558, (2002), pp. 171–186.PubMedCrossRefGoogle Scholar
  119. [119]
    Z. Oren, J. Ramesh, D. Avrahami, N. Suryaprakash, Y. Shai and R. Jelinek: “Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy”, Eur. J. Biochem., Vol. 269, (2002), pp. 3869–3880.PubMedCrossRefGoogle Scholar
  120. [120]
    S.-T Yang, S.Y. Shin, C.W. Lee, Y.-C. Kim, K.-S Hahm and J.I. Kim: “Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure”, FEBS Lett., Vol. 540, (2003), pp. 229–233.PubMedCrossRefGoogle Scholar
  121. [121]
    S.E. Blondelle and K. Lohner: “Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies”, Biopolymers, Vol. 55, (2000), pp. 74–87.PubMedCrossRefGoogle Scholar
  122. [122]
    A. Malina and Y. Shai: “Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide”, Biochem. J., Vol. 390, (2005), pp. 695–702.PubMedGoogle Scholar
  123. [123]
    L. Otvos Jr., C. Snyder, B. Condie, P. Bulet and J.D. Wade: “Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action”, Int. J. Pept. Res. Ther., Vol. 11, (2005), pp. 29–42.CrossRefGoogle Scholar
  124. [124]
    R. Eckert, F. Qi, D.K. Yarbrough, J. He, M.H. Anderson and W. Shi: “Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.”, Antimicrob. Agents Chemother., Vol. 50, (2006), pp. 1480–1488.PubMedCrossRefGoogle Scholar
  125. [125]
    C. Loose, K. Jensen, I. Rigoutsos and G. Stephanopoulos: “A linguistic model for the rational design of antimicrobial peptides”, Nature, Vol. 443, (2006), pp. 867–869.PubMedCrossRefGoogle Scholar
  126. [126]
    I. Rigoutsos and A. Floratos: “Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm”, Bioinformatics, Vol. 14, (1998), pp. 55–67.PubMedCrossRefGoogle Scholar
  127. [127]
    K. Hilpert, M.R. Elliott, R. Volkmer-Engert, P. Henklein, O. Donini, Q. Zhou, D.F. Winkler and R.E.W. Hancock: “Sequence requirements and an optimization strategy for short antimicrobial peptides”, Chem. Biol., Vol. 13, (2006), pp. 1101–1107.PubMedCrossRefGoogle Scholar
  128. [128]
    K. Hilpert, R. Volkmer-Engert, T. Walterand and R.E.W. Hancock: “High-throughput generation of small antibacterial peptides with improved activity”, Nature Biotechnol., Vol. 23, (2005), pp. 1008–1012.CrossRefGoogle Scholar
  129. [129]
    V. Nagarajan, N. Kaushik, B. Murali, C. Zhang, S. Lakhera, M.O. Elasri and Y. Deng: “A Fourier Transformation based method to mine peptide space for antimicrobial activity”, BMC Bioinformatics, Vol. 7, Suppl. 2, (2006).Google Scholar
  130. [130]
    A.D. McLachlan: “Analysis of periodic patterns in amino acid sequences: collagen”, Biopolymers, Vol. 16, (1977), pp. 1271–1297.PubMedCrossRefGoogle Scholar
  131. [131]
    S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattacharya and R. Ramaswamy: “Prediction of probable genes by fourier analysis of genomic sequences”, Comput. Appl. Biosci., Vol. 13, (1997), pp. 263–270.PubMedGoogle Scholar
  132. [132]
    D.J. Christensen, E.B. Gottlin, R.E. Benson and P.T. Hamilton: “Phage display for target-based antibacterial drug discovery”, Drug Discov. Today., Vol. 6, (2001), pp. 721–727.PubMedCrossRefGoogle Scholar
  133. [133]
    F. Sanschagrin and R.C. Levesque: “A specific peptide inhibitor of the class B metallo-ß-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display”, J. Antimicrob. Chemother., Vol. 55, (2005), pp. 252–255.PubMedCrossRefGoogle Scholar
  134. [134]
    R. Hyde-DeRuyscher, L.A. Paige, D.J. Christensen, N. Hyde-DeRuyscher, A. Lim, Z.L. Fredericks, J. Kranz, P. Gallant, J. Zhang, S.M. Rocklage, D.M. Fowlkes, P.A. Wendler and P.T. Hamilton: “Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries”, Chem. Biol., Vol. 7, (2000), pp. 17–25.PubMedCrossRefGoogle Scholar
  135. [135]
    H. Grøn and R. Hyde-DeRuyscher: “Peptides as tools in drug discovery”, Curr. Opin. Drug Disc., Vol. 3, (2000), pp. 636–645.Google Scholar
  136. [136]
    C. Galanos, O. Luderitz, E.T. Rietschel and O. Westphal: “Newer aspects of the chemistry and biology of bacterial lipopolysaccharides with special reference to their lipid A component”, Int. Rev. Biochem. Vol. 14, (1977), pp. 239–334.Google Scholar
  137. [137]
    C.J. Thomas, S. Sharma, G. Kumar, S.S. Visweswariah and A. Surolia: “Biopanning of endotoxin-specific phage displayed peptides”, Biochem. Biophys. Res. Commun., Vol. 307, (2003), pp. 133–138.PubMedCrossRefGoogle Scholar
  138. [138]
    J. Tao, P. Wendler, G. Connelly, A. Lim, J. Zhang, M. King, T. Li, J.A. Silverman, P.R. Schimmel and F.P. Tally: “Drug target validation: lethal infection blocked by inducible peptide”, Proc. Natl. Acad. Sci. U.S.A., Vol. 97, (2000), pp. 783–786.PubMedCrossRefGoogle Scholar
  139. [139]
    J.P. Tam: “Synthetic peptide vaccine design: synthesis and properties of a highdensity multiple antigenic peptide system”, Proc. Natl. Acad. Sci. U.S.A., Vol. 85, (1988), pp. 5409–5413.PubMedCrossRefGoogle Scholar
  140. [140]
    C.C. Lee, J.A. MacKay, J.M.J. Fréchet and F.C. Szoka: “Designing dendrimers for biological applications”, Nature Biotechnol., Vol. 23, (2005), pp. 1517–1526.CrossRefGoogle Scholar
  141. [141]
    L. Bracci, L. Lozzi, A. Pini, B. Lelli, C. Falciani, N. Niccolai, A. Bernini, A. Spreafico, P. Soldani and P. Neri: “A branched peptide mimotope of the nicotinic receptor binding site is a potent synthetic antidote against the snake neurotoxin alpha-bungarotoxin”, Biochemistry, Vol. 41, (2002), pp. 10194–10199.PubMedCrossRefGoogle Scholar
  142. [142]
    L. Lozzi, B. Lelli, Y. Runci, S. Scali, A. Bernini, C. Falciani, A. Pini, N. Niccolai, P. Neri and L. Bracci: “Rational design and molecular diversity for the construction of anti-alpha-bungarotoxin antidotes with high affinity and in vivo efficiency”, Chem. Biol., Vol. 10, (2003), pp. 411–417.PubMedCrossRefGoogle Scholar
  143. [143]
    L. Bracci, C. Falciani, B. Lelli, L. Lozzi, Y. Runci, A. Pini, M. G. De Montis, A. Tagliamonte, and P. Neri: “Synthetic peptides in the form of dendrimers become resistant to protease activity”, J. Biol. Chem., Vol. 278, (2003), 46590–46595.PubMedCrossRefGoogle Scholar
  144. [144]
    J.P. Tam, Y.A. Lu and J.L. Yang: “Antimicrobial dendrimeric peptides”, Eur. J. Biochem., Vol. 269, (2002), pp. 923–932.PubMedCrossRefGoogle Scholar
  145. [145]
    J. Janiszewska, J. Swieton, A.W. Lipkowski and Z. Urbanczyk-Lipkowska: “Low molecular mass peptide dendrimers that express antimicrobial properties”, Bioorg. Med. Chem. Lett., Vol. 13, (2003), pp. 3711–3713.PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrea Giuliani
    • 1
  • Giovanna Pirri
    • 1
  • Silvia Fabiole Nicoletto
    • 1
  1. 1.Research & Development UnitColleretto GiacosaItaly

Personalised recommendations