Central European Journal of Physics

, Volume 11, Issue 11, pp 1537–1540 | Cite as

Estimating the adsorption energy of element 113 on a gold surface

  • Alexander A. Rusakov
  • Yuriy A. Demidov
  • Andréi Zaitsevskii
Rapid Communication


We report first-principle based studies of element 113 (E113) interactions with gold aimed primarily at estimating the adsorption energy in thermochromatographic experiments. The electronic structure of E113-Au n systems was treated within the accurate shape-consistent small core relativistic pseudopotential framework at the level of non-collinear relativistic density functional theory (RDFT) with specially optimised Gaussian basis sets. We used gold clusters with up to 58 atoms to simulate the adsorption site on the stable Au(111) surface. Stabilization of the E113-Au n binding energy and the net Bader charge of E113 and the neighboring Au atoms with respect to n indicated the cluster size used was appropriate. The resulting adsorption energy estimates lie within the 1.0–1.2 eV range, substantially lower than previously reported values.


heaviest elements relativistic electronic structure modeling atom-at-a-time thermochromatography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. C. Hoffman, J. Radioanal. Nuc. Chem., 276(2), 525 (2008)CrossRefGoogle Scholar
  2. [2]
    Yu. Ts. Oganessian et al., Phys. Rev. Lett., 104, 142502 (2010)ADSCrossRefGoogle Scholar
  3. [3]
    V. Pershina, J. Anton, T. Jacob, Chem. Phys. Lett, 480, 157 (2009)ADSCrossRefGoogle Scholar
  4. [4]
    V. Pershina, A. Borschevsky, J. Anton, T. Jacob, J. Chem. Phys., 113, 104304 (2010)ADSCrossRefGoogle Scholar
  5. [5]
    A. D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  6. [6]
    J. P. Perdew, Phys. Rev. B 33, 8822 (1986).ADSCrossRefGoogle Scholar
  7. [7]
    B. S. Fox-Beyer, C. van Wüllen, Chem. Phys., 395, 95 (2012)ADSCrossRefGoogle Scholar
  8. [8]
    A. Zaitsevskii, A. V. Titov, A. A. Rusakov, C. van Wüllen, Chem. Phys. Lett., 508, 4 (2011)Google Scholar
  9. [9]
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  10. [10]
    A. V. Zaitsevskii, C. van Wüllen, A. V. Titov. Russian Chem. Rev. 78, No.12, 1173 (2009)ADSCrossRefGoogle Scholar
  11. [11]
    N. S. Mosyagin, A. Zaitsevskii, A. V. Titov, Int. Rev. At. Mol. Phys. 1, 63 (2010)Google Scholar
  12. [12]
    A. V. Mitin, C. van Wüllen, J. Chem. Phys. 124, 064305 (2006)ADSCrossRefGoogle Scholar
  13. [13]
    C. van Wüllen, Z. Phys. Chem. 224, 413 (2010)CrossRefGoogle Scholar
  14. [14]
    A. Zaitsevskii, C. van Wüllen, E. A. Rykova, A. V. Titov, Phys. Chem. Chem. Phys., 12, 4152 (2010)CrossRefGoogle Scholar
  15. [15]
    W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter, 21, 084204 (2009)ADSGoogle Scholar
  16. [16]
    E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, J. Comp. Chem., 28, 899 (2007)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Alexander A. Rusakov
    • 1
  • Yuriy A. Demidov
    • 2
  • Andréi Zaitsevskii
    • 2
    • 3
  1. 1.P. G. Demidov Yaroslavl State UniversityYaroslavlRussia
  2. 2.FSBI “Petersburg Nuclear Physics Institute”, Leningrad districtGatchinaRussia
  3. 3.NRC “Kurchatov Institute”MoscowRussia

Personalised recommendations