Central European Journal of Physics

, Volume 10, Issue 3, pp 715–722 | Cite as

Influence of ice concentration and floe-size distribution on cluster formation in sea-ice floes

Research Article

Abstract

At medium ice concentrations, sea ice consists of separate floes of different sizes interacting with each other through inelastic collisions, in a way similar to two-dimensional polydisperse granular gases. The dynamics of this type of ice cover is poorly understood. In this paper, a molecular-dynamics sea-ice model based on simplified momentum equations and a hard-disk collision model is used to analyze processes of cluster formation in sea-ice floes. The clusters, formed due to size-dependent equilibrium velocities of floes under a given forcing, have statistical properties dependent on the average ice concentration and on the parameters of the floe-size distribution. In particular, in terms of the size of the largest cluster in the system, two regimes are observed: one at low and one at high ice concentration. At high ice concentration, the dominating cluster spans the entire model domain and contains the majority of floes. The exponent of the cluster-size distribution increases with increasing exponent of the floe-size distribution. The results are discussed from the point of view of the collisional contribution to the internal stress in the ice, as well as from the role of clustering in the floe-formation processes. Thus, they may contribute to the formulation of more reliable sea-ice rheology models valid at medium ice concentrations.

Keywords

sea ice granular materials molecular-dynamics model cluster formation collisional stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Shen, W. Hibler III, M. Leppäranta, MIZEX Bulletin III, USACREL Special Report 84-28, 29 (1984)Google Scholar
  2. [2]
    H. Shen, W. Hibler III, M. Leppäranta, Acta Mech. 63, 143 (1986)CrossRefGoogle Scholar
  3. [3]
    Q. Lu, J. Larsen, P. Tryde, J. Geophys. Res. 94, 14525 (1989)ADSCrossRefGoogle Scholar
  4. [4]
    D. Feltham, Phyl. Trans. Royal Soc. A 363, 1677 (2005)ADSMATHCrossRefGoogle Scholar
  5. [5]
    J. Inoue, M. Wakatsuchi, Y. Fujiyoshi, Geophys. Res. Lett. 31 (2004)Google Scholar
  6. [6]
    T. Toyota, S. Takatsuji, M. Nakayama, Geophys. Res. Lett. 33 (2006)Google Scholar
  7. [7]
    A. Steer, A. Worby, P. Heil, Deep-Sea Res. II 55, 933 (2008)CrossRefGoogle Scholar
  8. [8]
    A. Herman, Phys. Rev. E 81, 066123 (2010)ADSCrossRefGoogle Scholar
  9. [9]
    T. Toyota, C. Haas, T. Tamura, Deep Sea Res. II 9–10, 1182 (2011)CrossRefGoogle Scholar
  10. [10]
    A. Herman, Phys. Rev. E 84, 056104 (2011)ADSCrossRefGoogle Scholar
  11. [11]
    I. Goldhirsch, G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993)ADSCrossRefGoogle Scholar
  12. [12]
    S. Luding, H. J. Herrmann, Chaos 9, 673 (1999)ADSMATHCrossRefGoogle Scholar
  13. [13]
    S. R. Dahl, R. Clelland, C. M. Hrenya, Phys. Fluids 14, 1972 (2002)ADSCrossRefGoogle Scholar
  14. [14]
    S. Luding, C. R. Physique 3, 153 (2002)ADSCrossRefGoogle Scholar
  15. [15]
    S. Miller, S. Luding, Phys. Rev. E 69, 031305 (2004)ADSCrossRefGoogle Scholar
  16. [16]
    S. Luding, Pramana J. Physics 64, 893 (2005)ADSCrossRefGoogle Scholar
  17. [17]
    R. B. Rice, C. M. Hrenya, Phys. Rev. E 79, 021304 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    R. B. Rice, C. M. Hrenya, Phys. Rev. E 81, 021302 (2010)ADSCrossRefGoogle Scholar
  19. [19]
    H. Sigurgeirsson, A. Stuart, W.-L. Wan, J. Comput. Phys. 172, 766 (2001)ADSMATHCrossRefGoogle Scholar
  20. [20]
    D. Watts, S. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  21. [21]
    S. Luding, O. Strauß, In: T. Pöschel, S. Luding (Eds), Granular Gases, Lecture Notes in Physics, Vol. 564, (Springer, Berlin-Heidelberg, 2001) 389Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Institute of OceanographyUniversity of GdanskGdyniaPoland

Personalised recommendations