Advertisement

Localization of Bose-Einstein condensates in optical lattices

  • Roberto FranzosiEmail author
  • Salvatore M. Giampaolo
  • Fabrizio Illuminati
  • Roberto Livi
  • Gian-Luca Oppo
  • Antonio Politi
Research Article
  • 51 Downloads

Abstract

The dynamics of repulsive bosons condensed in an optical lattice is effectively described by the Bose-Hubbard model. The classical limit of this model, reproduces the dynamics of Bose-Einstein condensates, in a periodic potential, and in the superfluid regime. Such dynamics is governed by a discrete nonlinear Schrödinger equation. Several papers, addressing the study of the discrete nonlinear Schrödinger dynamics, have predicted the spontaneous generation of (classical) breathers in coupled condensates. In the present contribute, we shall focus on localized solutions (quantum breathers) of the full Bose-Hubbard model. We will show that solutions exponentially localized in space and periodic in time exist also in absence of randomness. Thus, this kind of states, reproduce a novel quantum localization phenomenon due to the interplay between bounded energy spectrum and non-linearity.

Keywords

breathers Bose-Einstein condensates localized states optical lattices 

References

  1. [1]
    S. Flach, C.R. Willis, Phys. Rep. 295, 181 (1998)MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)ADSCrossRefGoogle Scholar
  3. [3]
    F.Kh. Abdullaev et al., Phys. Rev. A 64, 043606 (2001)ADSCrossRefGoogle Scholar
  4. [4]
    A. Montina, F.T. Arecchi, Phys. Rev. Lett. 94, 230402 (2005)ADSCrossRefGoogle Scholar
  5. [5]
    P. Louis et al., Phys. Rev. A 67, 013602 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    N.K. Efremidis, D. Christodoulides, Phys. Rev. A 67, 063608 (2003)ADSCrossRefGoogle Scholar
  7. [7]
    E.A. Ostrovskaya, Y.S. Kivshar, Opt. Express 12, 19 (2004)ADSCrossRefGoogle Scholar
  8. [8]
    T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, Phys. Rev. Lett. 96, 040401 (2006)ADSCrossRefGoogle Scholar
  9. [9]
    S. Aubry, Physica D 103, 201 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    V. Fleurov, R. Schilling, S. Flach, Phys. Rev. E 339 (1998)Google Scholar
  11. [11]
    L. Proville, Physica D 216, 191 (2006)ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)ADSCrossRefGoogle Scholar
  13. [13]
    D. Jaksch, P. Zoller, Ann. Phys.-New York 315, 52 (2005)ADSzbMATHCrossRefGoogle Scholar
  14. [14]
    D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)ADSCrossRefGoogle Scholar
  15. [15]
    W. Kohn, Phys. Rev. 115, 809 (1959)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  17. [17]
    R. Gilmore, C.M. Bowden, L.M. Narducci, Phys. Rev. A 12, 1019 (1975)ADSCrossRefGoogle Scholar
  18. [18]
    A. Perelomov, Generalized Coherent States and Their Applications (Springer-Verlag, Berlin, 1986)zbMATHGoogle Scholar
  19. [19]
    F. Trimborn, D. Witthaut, H.J. Korsch, Phys. Rev. A 77, 043631 (2008)ADSCrossRefGoogle Scholar
  20. [20]
    L. Amico, V. Penna, Phys. Rev. Lett. 80, 2189 (1998)ADSCrossRefGoogle Scholar
  21. [21]
    A. Montorsi, V. Penna, Phys. Rev. B 55, 8226 (1999)ADSCrossRefGoogle Scholar
  22. [22]
    L. Amico, V. Penna, Phys. Rev. B 62, 1224 (2000)ADSCrossRefGoogle Scholar
  23. [23]
    R. Livi, R. Franzosi, G.-L. Oppo, Phys. Rev. Lett. 97, 060401 (2006)ADSCrossRefGoogle Scholar
  24. [24]
    R. Franzosi, R. Livi, G.-L. Oppo, J. Phys. B-At. Mol. Opt. 40, 1195 (2007)ADSCrossRefGoogle Scholar
  25. [25]
    R. Franzosi, Phys. Rev. A 75, 053610 (2007)ADSCrossRefGoogle Scholar
  26. [26]
    P. Buonsante, V. Penna, A. Vezzani, Phys. Rev. A 72, 043620 (2005)ADSCrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Roberto Franzosi
    • 1
    • 2
    Email author
  • Salvatore M. Giampaolo
    • 3
    • 4
  • Fabrizio Illuminati
    • 3
    • 4
  • Roberto Livi
    • 5
  • Gian-Luca Oppo
    • 6
  • Antonio Politi
    • 7
  1. 1.C.N.I.S.M. UdR di Firenze, Dipartimento di FisicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
  2. 2.I.P.S.I.A. C. CenniniColle di Val d’Elsa (SI)Italy
  3. 3.Dipartimento di Matematica e InformaticaUniversità degli Studi di SalernoFisciano (SA)Italy
  4. 4.INFN Sez. di NapoliGruppo collegato di SalernoFisciano (SA)Italy
  5. 5.Dipartimento di FisicaUniversità di Firenze and INFN, Sez. di FirenzeSesto FiorentinoItaly
  6. 6.Department of PhysicsUniversity of StrathclydeGlasgowScotland, UK
  7. 7.Istituto dei Sistemi ComplessiConsiglio Nazionale delle RicercheSesto FiorentinoItaly

Personalised recommendations