Central European Journal of Physics

, Volume 10, Issue 1, pp 189–196 | Cite as

Structure and properties of solid solutions in the Mg-Al-B system

  • Ludmila G. Sevastyanova
  • Olga K. Gulish
  • Vladimir A. Stupnikov
  • Vladimir K. Genchel
  • Oleg V. Kravchenko
  • Boris M. Bulychev
  • Roman A. Lunin
  • Valeriy P. Tarasov
Research Article
  • 59 Downloads

Abstract

Compounds with the general formula Mg1−x Al x B2 were obtained by two-step ceramic synthesis. All compounds were characterized by X-ray diffraction, NMR spectroscopy, and by four point probe resistivity measurements in various magnetic fields method. The diborides unit cell parameters were determined as a function of the Al mole fraction. With the vaues of x up to 0.40 (where x is the composition of the stock prepared for sintering), the unit cell parameters of Mg1−x Al x B2 are similar to those of pure MgB2 and the superconducting transition temperature was lowered. For stock compositions of 0:25 ≤ x ≤ 0:60, the products contain a superstructure, also superconducting phase, which becomes the only product at x = 0:50, and at x > 0:60 this phase is replaced by AlB2-based solid solutions.

Keywords

magnesium diboride superconductivity superstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Nagatsu, N. Nakagawa, T. Muranaka, Y. Zenikant, J. Akimitzu, Nature 410, 63 (2001)CrossRefADSGoogle Scholar
  2. [2]
    L. G. Sevastyanova et al., B Acad. Sci. USSR CH+ 8, 1587 (2003)Google Scholar
  3. [3]
    A. L. Ivanoovskii, Usp. Khim+ 70, 811 (2001)Google Scholar
  4. [4]
    J. S. Slusky et al., Nature 410, 343 (2001)CrossRefADSGoogle Scholar
  5. [5]
    V. L. Ginzburg, D. A. Kirzhnits (Eds.), Problemy vysokotemperaturnykh sverkhprvodnikov, (Nauka, Moscow, 1977)Google Scholar
  6. [6]
    N. V. Vekshina, L. Ya. Markovskii, Yu. D. Kondrashev, T. K. Voevodskaya, J. Appl. Chem-USSR+ 44, 958 (1971)Google Scholar
  7. [7]
    M. Mudgel, V. P. S. Awana, N. Kishan, G. L. Bhalla, Physica C 467, 31 (2007)CrossRefADSGoogle Scholar
  8. [8]
    H. W. Zandbergen et al., Physica C 366, 221 (2002)CrossRefADSGoogle Scholar
  9. [9]
    G. Li et al., Phys. Rev. B 65, 132505 (2002)CrossRefADSGoogle Scholar
  10. [10]
    J. Karpinski et al., Phys. Rev. B 71, 174506 (2005)CrossRefADSGoogle Scholar
  11. [11]
    W. Rudorff, E. Schultze, Angew. Chem. Int. Edit. 66, 305 (1954)Google Scholar
  12. [12]
    P. Lagrange, A. Metrot, A. Herold, CR. Acad. Sci. II C 278, 701 (1974)Google Scholar
  13. [13]
    U. Burkhandt et al., J. Solid State Chem. 177, 389 (2004)CrossRefADSGoogle Scholar
  14. [14]
    M. E. Jones, R. E. Marsu, J. Am. Chem. Soc. 76, 1434 (1954)CrossRefGoogle Scholar
  15. [15]
    V. I. Matkovich, J. Economy, Acta Crystall. B-Stru. 26, 616 (1970)CrossRefGoogle Scholar
  16. [16]
    J. Y. Xiaau]ng et al., Phys. Rev. B 65, 214536 (2002)CrossRefADSGoogle Scholar
  17. [17]
    O. V. Shcherbakova, D. I. Dos Santos, D. X. Dou, Physica C 460–462, 583 (2007)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Ludmila G. Sevastyanova
    • 1
  • Olga K. Gulish
    • 1
  • Vladimir A. Stupnikov
    • 1
  • Vladimir K. Genchel
    • 1
  • Oleg V. Kravchenko
    • 1
  • Boris M. Bulychev
    • 1
  • Roman A. Lunin
    • 2
  • Valeriy P. Tarasov
    • 3
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations