Central European Journal of Physics

, Volume 9, Issue 2, pp 380–386 | Cite as

Characterization of chemical and physical parameters of post copper slag

  • Aldona Lowinska-Kluge
  • Pawel Piszora
  • Jolanta Darul
  • Teresa Kantel
  • Pawel Gambal
Research Article


Pilot studies concerning industrial scale application of post copper slag as a nano-additive for the modification of the corrosion resistance of cement composites have been described. The influence of a tribochemical treatment on some physicochemical properties as well as the corrosion resistance of the obtained composites have been evaluated based on DTG, RTG, and SEM coupled with EDX measurements and chemical analysis. It was observed that the so-called “size particle additive effect” influences the course and rate of transformations in the formed cement composites, and may lead to specific and desirable properties.


cement composites post copper slag nanoadditives physicochemical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Nazari, S. Riahi, S. Riahi, S. F. Shamekhi, A. Khademno, Journal of American Science 6, 98 (2010)Google Scholar
  2. [2]
    L. Senff, D. Hotza, W. L. Repette, V. M. Ferreira, J. A. Labrincha, Constr. Build. Mater. 24, 1432 (2010)CrossRefGoogle Scholar
  3. [3]
    A. Keyvani, International Journal of Nanoscience and Nanotechnology 3, 3 (2007)Google Scholar
  4. [4]
    K. Sobolev, M. Ferrada-Gutiérrez, Am. Ceram. Soc. Bull. 11, 16 (2005)Google Scholar
  5. [5]
    H. F. W. Taylor, Cement Chemistry, 2nd edition (Thomas Telford Publishing, London, 1997)CrossRefGoogle Scholar
  6. [6]
    H. M. Jennings, J. J. Thomas, J. S. Gevrenov, G. Constantinides, F-J. Ulm, Cement Concrete Res. 37, 329 (2007)CrossRefGoogle Scholar
  7. [7]
    K-S. Al-Jabri, R. A. Taha, A. Al-Hashmi, A. S. Al-Harthy, Constr. Build. Mater. 20, 322 (2006)CrossRefGoogle Scholar
  8. [8]
    A. Lowinska-Kluge, Rozprawy Politechniki Poznanskiej 419, 1 (2008) (in Polish)Google Scholar
  9. [9]
    M. I. Sanchez de Rojas, J. Rivera, M. Frias, F. Marin, J. Chem. Technol. Biot. 83, 208 (2008)Google Scholar
  10. [10]
    W. A. Moura, J. P. Goncalves, M. B. L. Lima, J. Mater. Sci. 42, 2226 (2007)ADSCrossRefGoogle Scholar
  11. [11]
    I. Alp, H. Deveci, H. Sungun, J. Hazard. Mater. 159, 390 (2008)CrossRefGoogle Scholar
  12. [12]
    EN196-2, Methods of testing cement — Part 2: Chemic alanalysis of cementGoogle Scholar
  13. [13]
    EN196-21, Method of testing cement — Part 21: Determination of the chloride, carbon dioxide and alkali content of cementGoogle Scholar
  14. [14]
    C. Dziubak, SzkłoiCeramika 55, 8 (2004) (in Polish)Google Scholar
  15. [15]
    A. Chaipanich, T. Nochaiya, J. Therm. Anal. Calorim. 99, 487 (2010)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Aldona Lowinska-Kluge
    • 1
  • Pawel Piszora
    • 2
  • Jolanta Darul
    • 2
  • Teresa Kantel
    • 1
  • Pawel Gambal
    • 3
  1. 1.Institute of Structural EngineeringPoznan University of TechnologyPoznanPoland
  2. 2.Department of Materials Chemistry, Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland
  3. 3.KGHM Ecoren S. A.LubinPoland

Personalised recommendations