Advertisement

Central European Journal of Physics

, Volume 8, Issue 3, pp 318–339 | Cite as

Spectroscopic observation of helium-ion- and hydrogen-catalyzed hydrino transitions

  • Randell L. Mills
  • Ying Lu
  • Kamran Akhtar
Research Article
  • 74 Downloads

Abstract

Four predictions of Mills’ Grand Unified Theory of Classical Physics (GUTCP) regarding atomic hydrogen undergoing a catalytic reaction with certain atomized elements and ions which resonantly, nonradiatively accept integer multiples of the potential energy of atomic hydrogen, m · 27.2 eV wherein m is an integer, have been confirmed experimentally. Specifically, a catalyst comprises a chemical or physical process with an enthalpy change equal to an integer multiple m of the potential energy of atomic hydrogen, 27.2 eV. For He+ m = 2, due to its ionization reaction to He2+, and two H atoms formed from H2 by collision with a third, hot H can also act as a catalyst with m = 2 for this third H. The product is H(1/p), fractional Rydberg states of atomic hydrogen called “hydrino atoms” wherein n = 1/2, 1/3, 1/4, …, 1/p(p≤137 is an integer) replaces the well-known parameter n = integer in the Rydberg equation for hydrogen excited states. The predictions for the hydrino reaction of (1) pumping of the catalyst excited states, (2) characteristic EUV continuum radiation, (3) fast H, and (4) hydrino products were observed in multiple catalyst-hydrogen plasma systems.

Keywords

helium-hydrogen and hydrogen plasmas catalysis pumping q · 13.6 eV EUV continua fast hydrogen molecular hydrino 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Mills, The Grand Unified Theory of Classical Physics, June 2008 Edition, www.blacklightpower.com/theory/bookdownload.shtml
  2. [2]
    R. L. Mills, Phys. Essays 16, 433 (2003)CrossRefADSGoogle Scholar
  3. [3]
    R. L. Mills, Phys. Essays 20, 403 (2007)CrossRefADSGoogle Scholar
  4. [4]
    R. L. Mills, Phys. Essays 18, 321 (2005)CrossRefADSGoogle Scholar
  5. [5]
    R. L. Mills, Phys. Essays 17, 342 (2004)CrossRefADSGoogle Scholar
  6. [6]
    R. L. Mills, Phys. Essays 19, 225 (2006)CrossRefADSGoogle Scholar
  7. [7]
    R. L. Mills, Phys. Essays 21, 103 (2008)CrossRefADSGoogle Scholar
  8. [8]
    R. L. Mills, Annales de la Fondation Louis de Broglie 30, 129 (2005)Google Scholar
  9. [9]
    R. Mills, Int. J. Hydrogen Energ. 27, 565 (2002)CrossRefGoogle Scholar
  10. [10]
    R. Mills, Int. J. Hydrogen Energ. 26, 1059 (2001)CrossRefGoogle Scholar
  11. [11]
    R. Mills, Int. J. Hydrogen Energ. 25, 1171 (2000)CrossRefGoogle Scholar
  12. [12]
    N. V. Sidgwick, The Chemical Elements and Their Compounds, Vol. I (Oxford, Clarendon Press, 1950) 17Google Scholar
  13. [13]
    M. D. Lamb, Luminescence Spectroscopy (Academic Press, London, 1978) 68Google Scholar
  14. [14]
    R. L. Mills et al., Int. J. Hydrogen Energ. 34, 573 (2009)CrossRefGoogle Scholar
  15. [15]
    R. Mills, K. Akhtar, B. Dhandapani, Int. J. Hydrogen Energ., DOI:10.1016/j.ijhydene. 2009.05.148Google Scholar
  16. [16]
    R. L. Mills, P. Ray, B. Dhandapani, R. M. Mayo, J. He, J. Appl. Phys. 92, 7008 (2002)CrossRefADSGoogle Scholar
  17. [17]
    R. L. Mills, P. Ray, B. Dhandapani, J. He, IEEE T. Plasma Sci. 31, 338 (2003)CrossRefADSGoogle Scholar
  18. [18]
    R. L. Mills, P. Ray, NewJ. Phys. 4, 22.1 (2002)Google Scholar
  19. [19]
    R. L. Mills, B. Dhandapani, K. Akhtar, Int. J. Hydrogen Energ. 33, 802 (2008)CrossRefGoogle Scholar
  20. [20]
    R. Mills, P. Ray, B. Dhandapani, J. Plasma Phys. 72, 469(2006)CrossRefADSGoogle Scholar
  21. [21]
    J. Phillips, C.-K. Chen, K. Akhtar, B. Dhandapani, R. Mills, Int. J. HydrogenEnerg. 32, 3010 (2007)CrossRefGoogle Scholar
  22. [22]
    R. L. Mills et al., Int. J. Hydrogen Energ. 32, 2988 (2007)CrossRefMathSciNetGoogle Scholar
  23. [23]
    R. Millsetal., Int. J. Hydrogen Energ. 32, 2573 (2007)CrossRefGoogle Scholar
  24. [24]
    R. Millsetal., Eur. Phys. J.-Appl. Phys. 28, 83 (2004)CrossRefADSGoogle Scholar
  25. [25]
    R. Mills, M. Nansteel, P. Ray, IEEE T. Plasma Sci. 30, 639 (2002)CrossRefADSGoogle Scholar
  26. [26]
    R. Mills, M. Nansteel, P. Ray, New J. Phys. 4, 70.1 (2002)Google Scholar
  27. [27]
    R. Mills, J. Dong, Y. Lu, Int. J. Hydrogen Energ. 25, 919 (2000)CrossRefGoogle Scholar
  28. [28]
    R. Mills, M. Nansteel, P. Ray, J. Plasma Phys. 69, 131 (2003)CrossRefADSGoogle Scholar
  29. [29]
    R. L. Mills, J. He, M. Nansteel, B. Dhandapani, Int. J. Global Energy (Special Edition in Energy Systems) 28, 304 (2007)CrossRefGoogle Scholar
  30. [30]
    H. Conrads, R. Mills, Th. Wrubel, Plasma Sources Sci. T. 12, 389 (2003)CrossRefADSGoogle Scholar
  31. [31]
    J. Phillips, R. L. Mills, X. Chen, J. Appl. Phys. 96, 3095 (2004)CrossRefADSGoogle Scholar
  32. [32]
    R. L. Mills, X. Chen, P. Ray, J. He, B. Dhandapani, Thermochim. Acta 406, 35 (2003)CrossRefGoogle Scholar
  33. [33]
    R. Millsetal., Int. J. Hydrogen Energ. 26, 339 (2001)CrossRefGoogle Scholar
  34. [34]
    R. Mills, B. Dhandapani, M. Nansteel, J. He, A. Voigt, Int. J. Hydrogen Energ. 26, 965 (2001)CrossRefGoogle Scholar
  35. [35]
    R. Mills, B. Dhandapani, N. Greenig, J. He, Int. J. Hydrogen Energ. 25, 1185 (2000)CrossRefGoogle Scholar
  36. [36]
    R. L. Mills, P. Ray, J. Phys. D Appl. Phys. 36, 1535 (2003)CrossRefADSGoogle Scholar
  37. [37]
    R. L. Millsetal., J. Mol. Struct. 643, 43 (2002)CrossRefADSGoogle Scholar
  38. [38]
    R. Mills, P. Ray, Int. J. Hydrogen Energ. 27, 301 (2002)CrossRefGoogle Scholar
  39. [39]
    R. L. Mills, P. Ray, Int. J. Hydrogen Energ. 28, 825 (2003)CrossRefGoogle Scholar
  40. [40]
    R. Mills, Int. J. Hydrogen Energ. 26, 1041 (2001)CrossRefADSGoogle Scholar
  41. [41]
    R. Mills, P. Ray, R. M. Mayo, IEEE T. Plasma Sci. 31, 236 (2003)CrossRefADSGoogle Scholar
  42. [42]
    R. L. Mills, P. Ray, J. Phys. D Appl. Phys. 36, 1504 (2003)CrossRefADSGoogle Scholar
  43. [43]
    R. Mills, P. Ray, R. M. Mayo, Appl. Phys. Lett. 82, 1679 (2003)CrossRefADSGoogle Scholar
  44. [44]
    R. L. Millsetal., J. Plasma Phys. 71, 877 (2005)CrossRefADSGoogle Scholar
  45. [45]
    R. L. Mills, The Grand Unified Theory of Classical Quantum Mechanics (HydroCatalysis Power Corp., Malvern, PA, 1995)Ch. 22Google Scholar
  46. [46]
    F. Bournaud et al., Science 316, 1166 (2007)CrossRefADSGoogle Scholar
  47. [47]
    B. G. Elmegreen, Science 316, 1132 (2007)CrossRefGoogle Scholar
  48. [48]
    K. K. Baldridge, J. S. Siegel, J. Phys. Chem. A 103, 4038 (1999)CrossRefGoogle Scholar
  49. [49]
    J. Mason, Editor, Multinuclear NMR (Plenum Press, New York, 1987) Ch.3Google Scholar
  50. [50]
    C. Suarez, E. J. Nicholas, M. R. Bowman, J. Phys. Chem. A 107, 3024 (2003)CrossRefGoogle Scholar
  51. [51]
    C. Suarez, The Chemical Educator, DOI:10.1333/s00897980202aGoogle Scholar
  52. [52]
    S. C. Badescu et al., Phys. Rev. Lett. 88, 136100–1 (2002)CrossRefADSGoogle Scholar
  53. [53]
    A. D. Johnson, S. P. Daley, A. L. Utz, S. T. Ceyer, Science 257, 223 (1992)CrossRefADSGoogle Scholar
  54. [54]
    R. Nieminen, Nature 356, 289 (1992)CrossRefADSGoogle Scholar
  55. [55]
    A. D. Johnson, K. J. Maynard, S. P. Daley, Q. Y. Yang, S. T. Ceyer, Phys. Rev. Lett. 67, 927 (1991)CrossRefADSGoogle Scholar
  56. [56]
    E. L. Ayers and W. Benesch, Phys. Rev., A 37, 194 (1988)CrossRefADSGoogle Scholar
  57. [57]
    J. Kikuchi, M. Suzuki, H. Yano, S. Fujimura, Proceedings SPIE-The International Society for Optical Engineering (1993) 70Google Scholar
  58. [58]
    W. L. Wiese, In: R. H. Huddelstone, S. L. Leonard (Eds.), Plasma Diagnostics Technique (Academic Press, New York, 1965) 265Google Scholar
  59. [59]
    V. Grishin, B. Ishkhanov, S. Lichachev, V. Petukhov, Proceedings of EPAC 2000 (Vienna, Austria, 2000) 2606Google Scholar
  60. [60]
    S. Labov, S. Bowyer, Astrophys. J. 371, 810 (1991)CrossRefADSGoogle Scholar
  61. [61]
    S. Bower, G. Field, J. Mack, Nature 217, 32 (1968)CrossRefADSGoogle Scholar
  62. [62]
    C. W. Danforth, J. M. Shull, Astrophys. J. 679, 194 (2008)CrossRefADSGoogle Scholar
  63. [63]
    N. Werneretal., Astron. Astrophys., 482, L29 (2008)CrossRefADSGoogle Scholar
  64. [64]
    N. Craigetal., Astrophys. J. Suppl. S. 113, (1997) 131CrossRefADSGoogle Scholar
  65. [65]
    M. Kuraica, N. Konjevic, Phys. Rev. A 46, 4429 (1992)CrossRefADSGoogle Scholar
  66. [66]
    M. Kuraica, N. Konjevic, M. Platisa, D. Pantelic, Spectrochim. Acta 47, 1173 (1992)CrossRefADSGoogle Scholar
  67. [67]
    I. R. Videnovic, N. Konjevic, M. M. Kuraica, Spectrochim. Acta B 51, 1707 (1996)CrossRefADSGoogle Scholar
  68. [69]
    S. Djurovic, J. R. Roberts, J. Appl. Phys. 74, 6558 (1993)CrossRefADSGoogle Scholar
  69. [70]
    S. B. Radovanov, K. Dzierzega, J. R. Roberts, J. K. Olthoff, Appl. Phys. Lett. 66, 2637 (1995)CrossRefADSGoogle Scholar
  70. [71]
    S. B. Radovanov, J. K. Olthoff, R. J. Van Brunt, S. Djurovic, J. Appl. Phys. 78, 746 (1995)CrossRefADSGoogle Scholar
  71. [72]
    G. Baravian, Y. Chouan, A. Ricard, G. Sultan, J. Appl. Phys. 61, 5249 (1987)CrossRefADSGoogle Scholar
  72. [73]
    A. V. Phelps, J. Phys. Chem. Ref. Data 21, 883 (1992)CrossRefADSGoogle Scholar
  73. [74]
    C. Barbeau, J. Jolly, J. Phys. D Appl. Phys. 23, 1168 (1990)CrossRefADSGoogle Scholar
  74. [75]
    S. A. Bzenic, S. B. Radovanov, S. B. Vrhovac, Z. B. Velikic, B. M. Jelenkovic, Chem. Phys. Lett. 184, 108 (1991)CrossRefADSGoogle Scholar
  75. [76]
    E. L. Ayers, W. Benesch, Phys. Rev. A 37, 194 (1988)CrossRefADSGoogle Scholar
  76. [77]
    W. Benesch, E. Li, Opt. Lett. 9, 338 (1984)CrossRefADSGoogle Scholar
  77. [78]
    D. Barton, J. W. Bradley, D. A. Steele, R. D. Short, J. Phys. Chem. B 103, 4423 (1999)CrossRefGoogle Scholar
  78. [79]
    D. R. Lide, CRC Handbook of Chemistry and Physics, 79th Ed. (CRC Press, Boca Raton, FL, 1998–1999) 9–55, 10–175Google Scholar
  79. [80]
    A. J. Gordon, R. A. Ford, The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References (John Wiley & Sons, Inc., 1972) 256Google Scholar
  80. [81]
    H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 62, 7512 (1997)CrossRefGoogle Scholar
  81. [82]
    C. J. Pouchert, Aldrich Library of NMR Spectra, 2nd Ed. (Aldrich Chemical Co., 1983)Google Scholar
  82. [83]
    C. J. Pouchertm J. Behnke, AldrichLibrary of 13C and 1H FT-NMR Spectra, 2nd Ed. (Aldrich Chemical Co., 1993)Google Scholar
  83. [84]
    E. D. Becker, High Resolution NMR Theory and Chemical Applications, 2nd Ed. (Academic Press, Inc., Orlando, FL, 1980) 20, 184Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.BlackLight Power, Inc.CranburyUSA

Personalised recommendations