Advertisement

Microstructure and thermal properties of quasi-equal rare earth substitution Y0.5Gd0.5Ba2Cu3O6.94 superconductor

  • Stanimira D. TerzievaEmail author
  • Angelina K. Stoyanova-Ivanova
  • Boris L. Shivachev
  • Bonka M. Terzijska
  • Andrzej J. Zaleski
  • Halina Misiorek
  • Valdek Mikli
Research Article
  • 31 Downloads

Abstract

Sintering effects in YBa2Cu3Oz samples with quasi-equal rare earth substitution have been investigated. It has been shown that the Y-123 type compound can be formed when gadolinium is partially substituted (in this case 50% atomic substitution) for yttrium. The superconducting compound was obtained by the optimized ceramic method, including solid-state reaction, melting and sintering, controlled by X-ray diffraction. The microstructure was investigated by SEM and energy dispersive X-ray analyses. An AC susceptibility measurement has shown that T c =93 K. Temperature-dependece of the thermal conductivity (4.5–300 K) of the polycrystalline Y0.5Gd0.5Ba2Cu3O6.94 sample was also measured.

Keywords

superconducting ceramic microstructure thermal properties 

PACS (2008)

74.25 74.62-c 74.62.bf 74.72-h 74.72.Blk 

References

  1. [1]
    T. Venkatesan et al., Appl. Phys. Lett 56, 391 (2007)CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    H. Zhou et al., Physica C 152, 321 (1988)CrossRefADSGoogle Scholar
  3. [3]
    A. Radhika Devl et al., Supercond. Sci. Tech. 13, 935 (2000)CrossRefADSGoogle Scholar
  4. [4]
    A.El. Ali et al., Physica B 321, 320 (2002)CrossRefADSGoogle Scholar
  5. [5]
    K. Ozturk, S. Celik, U. Cevik, E. Yanmaz, J. Alloy. Compd. 433, 46 (2007)CrossRefGoogle Scholar
  6. [6]
    L. Shlyk et al., Physica C 377, 437 (2002)CrossRefGoogle Scholar
  7. [7]
    N. Ogava, M. Yoshida, I. Hirabayashi, S. Tanaka, F. Maury, Supercond. Sci. Tech. 5, S89 (1992)CrossRefADSGoogle Scholar
  8. [8]
    G.K. Balha et al., Cryogenics 35, 61 (1995)CrossRefGoogle Scholar
  9. [9]
    Yong Feng et al., Physica C 297, 75 (1998)CrossRefADSGoogle Scholar
  10. [10]
    A. Jezowski, J. Mucha, G. Pompe, J Phys. 20, 1500 (1987)ADSGoogle Scholar
  11. [11]
    A. K. Stoyanova-Ivanova, et al., Cent. Eur. J. Chem. 4, 167 (2006)CrossRefGoogle Scholar
  12. [12]
    A. K. Styanova-Ivanova, S. D. Terzieva, B. L. Shivachev, V. Mikli, L. K. Vladimirova, Cent. Eur. J. Phys. 6, 76 (2008)CrossRefGoogle Scholar
  13. [13]
    A. Stoyanova-Ivanova et al., Journal of University of Chemical Technology and Metallurgy 41, 25 (2006)Google Scholar
  14. [14]
    S. Terzieva et al., J. Optoelectron. Adv. Mat. 7, 477 (2005)Google Scholar
  15. [15]
    A. K. Stoyanova-Ivanova, T. K. Nedelcheva, L. K. Vladimirova, Cent. Eur. J. Chem. 3, 432 (2005)CrossRefGoogle Scholar
  16. [16]
    A. Nishida, N. Fuketa, K. Furuya, K. Horai, Fukuoka Daigaku Rigaku Shuho 23, 155 (1993)Google Scholar
  17. [17]
    J.L. Tallon, N.E. Flower, Physica C 204, 237 (1993)CrossRefADSGoogle Scholar
  18. [18]
    J.J. Neumeier, H.A. Zimmermann, Phys. Rrev. B 47, 8385 (1993)CrossRefADSGoogle Scholar
  19. [19]
    C. Uher, Physica C 273, 314 (1997)CrossRefGoogle Scholar
  20. [20]
    A. Bernasconi et al., Physica C 153, 1034 (1988)CrossRefGoogle Scholar
  21. [21]
    F.G. Aliev, V.V. Moshchalkov, V.V. Prydun, Physica C 162, 572 (1989)CrossRefADSGoogle Scholar
  22. [22]
    J.L. Cohn, S.D. Peacor, C. Uher, Phys. Rev. B 38, 2892 (1988)CrossRefADSGoogle Scholar
  23. [23]
    G.A. Shams, J.W. Cochrane, G.J. Russell, Physica C 351, 449 (2001)CrossRefADSGoogle Scholar
  24. [24]
    A. Jezowski et al., Helv. Phys. Acta. 61, 438 (1988)Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stanimira D. Terzieva
    • 1
    Email author
  • Angelina K. Stoyanova-Ivanova
    • 1
  • Boris L. Shivachev
    • 2
  • Bonka M. Terzijska
    • 1
  • Andrzej J. Zaleski
    • 3
  • Halina Misiorek
    • 3
  • Valdek Mikli
    • 4
  1. 1.Georgi Nadjakov Institute of Solid State PhysicsBulgarian Academy of ScienceSofiaBulgaria
  2. 2.Central Laboratory of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  4. 4.Centre for Materials ResearchTallin Technical UniversityTallinEstonia

Personalised recommendations