Advertisement

Central European Journal of Physics

, Volume 6, Issue 3, pp 479–490 | Cite as

Temperature and electric field dependences of the mobility of electrons in vertical transport in GaAs/Ga1−y Al y As barrier structures containing quantum wells

  • Safi Altunöz
  • Hüseyin Çelik
  • Mehmet CankurtaranEmail author
Research Article
  • 46 Downloads

Abstract

The mobility of electrons in vertical transport in GaAs/Ga1−y Al y As barrier structures was investigated using geometric magnetoresistance measurements in the dark. The samples studied had Ga1−y Al y As (0 ≤ y ≤ 0:26) linearly graded barriers between the n+-GaAs contacts and the Ga0:74Al0:26As central barrier, which contain N w (=0, 2, 4, 7 and 10) n-doped GaAs quantum wells. The mobility was determined as functions of (i) temperature (80–290 K) at low applied voltage (0.01–0.1 V) and (ii) applied voltage (0.005–1.6 V) at selected temperatures in the range 3.5–290 K. The experimental results for the temperature dependence of low-field mobility suggest that space-charge scattering is dominant in the samples with N w =0 and 2, whereas ionized impurity scattering is dominant in the samples with N w =4, 7 and 10. The effect of polar optical phonon scattering on the mobility becomes significant in all barrier structures at temperatures above about 200 K. The difference between the measured mobility and the calculated total mobility in the samples with N w =4, 7 and 10, observed above 200 K, is attributed to the reflection of electrons from well-barrier interfaces in the quantum wells and interface roughness scattering. The rapid decrease of mobility with applied voltage at high voltages is explained by intervalley scattering of hot electrons.

Keywords

barrier structures vertical transport geometric magnetoresistance mobility hot electrons scattering mechanisms drift velocity 

PACS (2008)

72.20.Fr 72.20.Dp 73.43.Qt 73.40.Ty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.F. Levine, J. Appl. Phys. 74, R1 (1993)CrossRefADSGoogle Scholar
  2. [2]
    M.E. Daniels et al., J. Appl. Phys. 74, 5606 (1993)CrossRefADSGoogle Scholar
  3. [3]
    M.E. Daniels et al., Semicond. Sci. Technol. 9, 595 (1994)CrossRefADSGoogle Scholar
  4. [4]
    P.J. Bishop, M.E. Daniels, B. K. Ridley, J. S. Roberts, G. Hill, Semicond. Sci. Technol. 11, 873 (1996)CrossRefADSGoogle Scholar
  5. [5]
    M.E. Daniels, P.J. Bishop, B.K. Ridley, Semicond. Sci. Technol. 12, 375 (1997)CrossRefADSGoogle Scholar
  6. [6]
    P.J. Bishop, M.E. Daniels, B.K. Ridley, Semicond. Sci. Technol. 13, 482 (1998)CrossRefADSGoogle Scholar
  7. [7]
    A.K. Saxena, Phys. Rev. B 24, 3295 (1981)CrossRefADSGoogle Scholar
  8. [8]
    D.C. Look, Electrical Characterization of GaAs Materials and Devices (John Wiley & Sons, New York, 1989)Google Scholar
  9. [9]
    A. Fraenkel, E. Finkman, S. Maimon, G. Bahir, J. Appl. Phys. 75, 3536 (1994)CrossRefADSGoogle Scholar
  10. [10]
    L.M. Falicov, M. Cuevas, Phys. Rev. 164, 1025 (1967)CrossRefADSGoogle Scholar
  11. [11]
    G.B. Stringfellow, J. Appl. Phys. 50, 4178 (1979)CrossRefADSGoogle Scholar
  12. [12]
    G.B. Stringfellow, H. Künzel, J. Appl. Phys. 51, 3254 (1980)CrossRefADSGoogle Scholar
  13. [13]
    P.K. Bhattacharya, U. Das, M.J. Ludowise, Phys. Rev. B 29, 6623 (1984)CrossRefADSGoogle Scholar
  14. [14]
    F. Bosc, J. Sicart, J.L. Robert, Semicond. Sci. Technol. 14, 64 (1999)CrossRefADSGoogle Scholar
  15. [15]
    C.M. Wolfe, G.E. Stillman, W.T. Lindley, J. Appl. Phys. 41, 3088 (1970)CrossRefADSGoogle Scholar
  16. [16]
    A. Fortini, D. Diguet, J. Lugand, J. Appl. Phys. 41, 3121 (1970)CrossRefADSGoogle Scholar
  17. [17]
    L.R. Weisberg, J. Appl. Phys. 33, 1817 (1962)CrossRefADSGoogle Scholar
  18. [18]
    A.K. Saxena, K.S. Gurumurthy, J. Phys. Chem. Solids 43, 801 (1982)CrossRefADSGoogle Scholar
  19. [19]
    K. Kaneko, M. Ayabe, N. Watanebe, Inst. Phys. Conf. Ser. 33a, 216 (1977)Google Scholar
  20. [20]
    J.R. Hauser, M.A. Littlejohn, T.H. Glisson, Appl. Phys. Lett. 28, 458 (1976)CrossRefADSGoogle Scholar
  21. [21]
    B.K. Ridley, In: J. Shah (Ed.), Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Academic Press, New York, 1992) 17.Google Scholar
  22. [22]
    T.R. Jervis, E. F. Johnson, Solid State Electronics 13, 181 (1970)CrossRefGoogle Scholar
  23. [23]
    J.W. Orton, J. Phys. D Appl. Phys. 6, 851 (1973)CrossRefADSGoogle Scholar
  24. [24]
    M.J. Kane et al., J. Appl. Phys. 73, 7966 (1993)CrossRefADSGoogle Scholar
  25. [25]
    S. Adachi, J. Appl. Phys. 58, R1 (1985)CrossRefADSGoogle Scholar
  26. [26]
    H. Çelik, M. Cankurtaran, S. Altunöz, N. Balkan, Investigation of vertical transport in GaAs/Ga1-yAlyAs barrier structures containing multiple quantum wells, Final Report to project: TÜBITAK TBAG-2218, Ankara, 2006 (in Turkish).Google Scholar
  27. [27]
    R. Jazsek, J. Mater. Sci. 12, 1 (2001)CrossRefGoogle Scholar
  28. [28]
    H. Çelik, M. Cankurtaran, A. Bayrakli, E. Tiras, N. Balkan, Semicond. Sci. Technol. 12, 389 (1997)CrossRefADSGoogle Scholar
  29. [29]
    N. Balkan et al., Superlattices and Microstructures 22, 263 (1997)CrossRefGoogle Scholar
  30. [30]
    I. Dharssi, P.N. Butcher, J. Phys.-Condens. Mat. 2, 4629 (1990)CrossRefADSGoogle Scholar
  31. [31]
    G. Etemadi, J.F. Palmier, Solid State Commun. 86, 739 (1993)CrossRefADSGoogle Scholar
  32. [32]
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer-Verlag, Berlin, 1995)Google Scholar
  33. [33]
    C.L. Collins, P.Y. Yu, Phys. Rev. B 30, 4501 (1984)CrossRefADSGoogle Scholar
  34. [34]
    D.E. Aspnes, Phys. Rev. B 14, 5331 (1976)CrossRefADSGoogle Scholar
  35. [35]
    A.K. Saxena, Phys. Rev. B 25, 5428 (1982)CrossRefADSGoogle Scholar
  36. [36]
    K.F. Brennan, D.H. Park, K. Hess, M.A. Littlejohn, J. Appl. Phys. 63, 5004 (1988)CrossRefADSGoogle Scholar
  37. [37]
    V.M. Fichetti, IEEE T. Electron. Dev. 38, 634 (1991)CrossRefADSGoogle Scholar
  38. [38]
    X. Zhou, H.S. Tan, Int. J. Electronics 76, 1049 (1994)CrossRefGoogle Scholar
  39. [39]
    O.O. Cellek, S. Memis, U. Bostanci, S. Ozer, C. Besikci, Physica E 24, 318 (2004)CrossRefADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Safi Altunöz
    • 1
  • Hüseyin Çelik
    • 1
  • Mehmet Cankurtaran
    • 1
    Email author
  1. 1.Faculty of Engineering, Department of Physics, BeytepeHacettepe UniversityAnkaraTurkey

Personalised recommendations