Central European Journal of Physics

, Volume 6, Issue 1, pp 76–79 | Cite as

Synthesis and superconducting properties of Nd0.33Eu0.08Gd0.58Ba2Cu3O z materials

  • Angelina K. Stoyanova-IvanovaEmail author
  • Stanimira D. Terzieva
  • Boris L. Shivachev
  • Valdek Mikli
  • Latinaka K. Vladimirova
Research Article


We have studied the effect of the ratio of different rare-earth element on the superconducting properties and phase formation of (Nd0.33Eu0.08Gd0.58)Ba2Cu3O z ceramic. Bulk NEG samples were prepared using the solid-state reaction process. The superconducting transition for Nd0.33Eu0.08Gd0.58Ba2Cu3O z is T c ≈90 K and the value of the critical current density (J c ) is 13.9 A/cm2 at 77 K under zero magnetic fields. This value is twice as high when compared with the (J c ) value of YBCO systems (J c = 7.31 A/cm2). The obtained bulk sample was used for the production of superconducting Ag-sheathed tapes by OPIT method including hot rolling. The critical current density of the obtained tape (337 A/cm2) is one order higher than the one of the bulk sample.


NEG superconducting ceramic microstructure OPIT method 

PACS (2008)

61.10Nz 68.37-d 68.37Hk 68.55Jk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Muralidhar, M.R. Kobilichka, T. Saitoh, M. Murakami, Supercond. Sci. Techno. 11, 1349 (1998)CrossRefADSGoogle Scholar
  2. [2]
    M. Muralidhar, M.R. Kobilichka, P. Diko, M. Murakami, Appl. Phys. Lett. 76, 91 (2000)CrossRefADSGoogle Scholar
  3. [3]
    A.K. Pradhan, M. Muralidhar, M.R. Kobilichka, M. Murakami, K. Nakao, N. Kobilichka, Appl. Phys. Lett. 75, 253 (1999)CrossRefADSGoogle Scholar
  4. [4]
    M. Muralidhar, M. Murakami, Phys. Rev. B 62, 13911 (2000)Google Scholar
  5. [5]
    M. Muralidhar, N. Sakai, M. Jirsa, T. Kono, M. Murakami, I. Hurabayashi, Physica C 445, 403 (2006)CrossRefADSGoogle Scholar
  6. [6]
    M. Muralidhar, M. Murakami, J. Supercond. 14, 415 (2001)Google Scholar
  7. [7]
    M. Muralidhar, N. Sakai, M. Nishiyama, M. Jirsa, T. Machi, M. Murakami, Appl. Phys. Lett. 82, 943 (2002)CrossRefADSGoogle Scholar
  8. [8]
    S. Terzieva, A. Stoyanova-Ivanova, V. Mikli, A. Zahariev, Ch. Angelov, Y. Dimitriev, V. Kovachev, J. Optoelectron. Adv. M. 9, 453 (2007)Google Scholar
  9. [9]
    T. Nedelcheva, L. Vladimirova, Anal. Chim. Acta 437, 259 (2001)CrossRefGoogle Scholar
  10. [10]
    A.K. Stoyanova-Ivanova, T.K. Nedelcheva, L. Vladimirova, Cent. Eur. J. Chem. 3, 432 (2005)CrossRefGoogle Scholar
  11. [11]
    D.A. Dimitrov, A.L. Zahariev, J.K. Georgiev, G.A. Kolev, J.N. Petrinski, Tz. Ivanov, Cryogenics 34, 487 (1994)CrossRefGoogle Scholar
  12. [12]
    A. Nishida, N. Fuketa, K. Furuya, K. Horai, Fukuoka Daigaku Rigaku Shuho Journal 23, 155 (1993)Google Scholar
  13. [13]
    J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus, W.K. Kwok, Phys. Rev. B 41, 1863 (1990)CrossRefADSGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Angelina K. Stoyanova-Ivanova
    • 1
    Email author
  • Stanimira D. Terzieva
    • 1
  • Boris L. Shivachev
    • 2
  • Valdek Mikli
    • 3
  • Latinaka K. Vladimirova
    • 4
  1. 1.Georgi Nadjakov Institute of Solid State PhysicsBulgarian Academy of ScienceSofiaBulgaria
  2. 2.Central Laboratory of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Centre for Materials ResearchTallin Technical UniversityTallinEstonia
  4. 4.University of Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations