Central European Journal of Mathematics

, Volume 11, Issue 11, pp 1900–1913 | Cite as

Kernels of representations of Drinfeld doubles of finite groups

Research Article
  • 65 Downloads

Abstract

A description of the commutator of a normal subcategory of the fusion category of representation Rep A of a semisimple Hopf algebra A is given. Formulae for the kernels of representations of Drinfeld doubles D(G) of finite groups G are presented. It is shown that all these kernels are normal Hopf subalgebras.

Keywords

Normal fusion subcategories Drinfeld doubles of finite groups Fusion subcategories Kernels of representations 

MSC

16W30 18D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bruguières A., Natale S., Exact sequences of tensor categories, Int. Math. Res. Not. IMRN, 2011, 24, 5644–5705Google Scholar
  2. [2]
    Burciu S., Coset decomposition for semisimple Hopf algebras, Comm. Algebra, 2009, 37(10), 3573–3585MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Burciu S., Normal Hopf subalgebras of semisimple Hopf Algebras, Proc. Amer. Math. Soc., 2009, 137(12), 3969–3979MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Burciu S., Categorical Hopf kernels and representations of semisimple Hopf algebras, J. Algebra, 2011, 337, 253–260MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Burciu S., On coideal subalgebras of cocentral Kac algebras and a generalization of Wall’s conjecture, preprint available at http://arxiv.org/abs/1203.5491
  6. [6]
    Etingof P., Nikshych D., Ostrik V., On fusion categories, Ann. of Math., 2005, 162(2), 581–642MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Gelaki S., Nikshych D., Nilpotent fusion categories, Adv. Math., 2008, 217(3), 1053–1071MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Kadison L., Hopf subalgebras and tensor powers of generalized permutation modules, preprint avaliable at http://arxiv.org/abs/1210.3178
  9. [9]
    Larson R.G, Characters of Hopf algebras, J. Algebra, 1971, 17(3), 352–368MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Larson R.G., Radford D.E., Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra, 1988, 117(2), 267–289MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Masuoka A., Semisimple Hopf algebras of dimension 2p, Comm. Algebra, 1995, 23(5), 1931–1940MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Montgomery S., Hopf algebras and their actions on rings, In: CBMS Reg. Conf. Ser. Math., 82, American Mathematical Society, Providence, 1993MATHGoogle Scholar
  13. [13]
    Müger M., On the structure of modular categories, Proc. London Math. Soc., 2003, 87(2), 291–308MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Naidu D., Nikshych D., Lagrangian subcategories and braided tensor equivalences of twisted quantum doubles of finite groups, Comm. Math. Phys., 2008, 279(3), 845–872MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Naidu D., Nikshych D., Witherspoon S., Fusion subcategories of representation categories of twisted quantum doubles of finite groups, Int. Math. Res. Not. IMRN, 2009, 22, 4183–4219MathSciNetGoogle Scholar
  16. [16]
    Nichols W.D., Richmond M.B., The Grothendieck algebra of a Hopf algebra. I, Comm. Algebra, 1988, 26(4), 1081–1095MathSciNetCrossRefGoogle Scholar
  17. [17]
    Nichols W.D., Richmond M.B., The Grothendieck group of a Hopf algebra, J. Pure Appl. Algebra, 1996, 106(3), 297–306MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Passman D.S., Quinn D., Burnside’s theorem for Hopf algebras, Proc. Amer. Math. Soc., 1995, 123(2), 327–333MathSciNetMATHGoogle Scholar
  19. [19]
    Sommerhäuser Y., On Kaplansky’s fifth conjecture, J. Algebra, 1998, 204(1), 202–224MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Zhu Y., Hopf algebras of prime dimension, Int. Math. Res. Not. IMRN, 1994, 1, 53–59CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations