Central European Journal of Mathematics

, Volume 11, Issue 2, pp 308–321

# The structure of plane graphs with independent crossings and its applications to coloring problems

• Xin Zhang
• Guizhen Liu
Research Article

## Abstract

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ℈Δ/2⌊ if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.

## Keywords

Independent crossing IC-planar graph Light edge Coloring Discharging

05C10 05C15

## References

1. [1]
Akiyama J., Exoo G., Harary F., Covering and packing in graphs. III: Cyclic and acyclic invariants, Math. Slovaca, 1980, 30(4), 405–417
2. [2]
Albertson M.O., Chromatic number, independence ratio, and crossing number, Ars Math. Contemp., 2008, 1(1), 1–6
3. [3]
Bondy J.A., Murty U.S.R., Graph Theory with Applications, Elsevier, New York, 1976
4. [4]
Borodin O.V., Solution of the Ringel problem on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Metody Diskret. Analiz., 1984, 41, 12–26
5. [5]
Borodin O.V., A new proof of the 6-color theorem, J. Graph Theory, 1995, 19(4), 507–521
6. [6]
Borodin O.V., Kostochka A.V., Woodall D.R., List edge and list total colorings of multigraphs, J. Combin. Theory Ser. B, 1997, 71(2), 184–204
7. [7]
Cygan M., Hou J.-F., Kowalik Ł., Lužar B., Wu J.-L., A planar linear arboricity conjecture, J. Graph Theory, 2012, 69(4), 403–425
8. [8]
Erman R., Havet F., Lidický B., Pangrác O., 5-coloring graphs with 4 crossings, SIAM J. Discrete Math., 2011, 25(1), 401–422
9. [9]
Fabrici I., Madaras T., The structure of 1-planar graphs, Discrete Math., 2007, 307(7–8), 854–865
10. [10]
Jensen T.R., Toft B., Graph Coloring Problems, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, New York, 1995Google Scholar
11. [11]
Král D., Stacho L., Coloring plane graphs with independent crossings, J. Graph Theory, 2010, 64(3), 184–205
12. [12]
Li X., Average degrees of critical graphs, Ars Combin., 2005, 74, 303–322
13. [13]
Pach J., Tóth G., Graphs drawn with few crossings per edge, Combinatorica, 1997, 17(3), 427–439
14. [14]
Ringel G., Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg, 1965, 29, 107–117
15. [15]
Sanders D.P., Zhao Y., On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory, 1999, 31(1), 67–73
16. [16]
Sanders D.P., Zhao Y., Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B, 2001, 83(2), 201–212
17. [17]
Vizing V.G., Critical graphs with given chromatic class, Diskret. Analiz., 1965, 5, 9–17
18. [18]
Wu J.-L., On the linear arboricity of planar graphs, J. Graph Theory, 1999, 31(2), 129–134
19. [19]
Wu J., Wang P., List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math., 2008, 308(4), 6210–6215
20. [20]
Wu J.-L., Wu Y.-W., The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory, 2008, 58(3), 210–220
21. [21]
Zhang X., Hou J., Liu G., On total colorings of 1-planar graphs, preprint available at http://xinzhang.hpage.com/get_file.php?id=1513981&vnr=342077
22. [22]
Zhang X., Wu J.-L., On edge colorings of 1-planar graphs, Inform. Process. Lett., 2011, 111(3), 124–128
23. [23]
Zhang X., Wu J., Liu G., List edge and list total coloring of 1-planar graphs, Front. Math. China (in press), DOI: 10.1007/s11464-012-0184-7Google Scholar