Central European Journal of Mathematics

, Volume 11, Issue 2, pp 308–321

# The structure of plane graphs with independent crossings and its applications to coloring problems

Research Article

## Abstract

If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ℈Δ/2⌊ if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.

## Keywords

Independent crossing IC-planar graph Light edge Coloring Discharging

05C10 05C15

## Preview

Unable to display preview. Download preview PDF.

## References

1. 
Akiyama J., Exoo G., Harary F., Covering and packing in graphs. III: Cyclic and acyclic invariants, Math. Slovaca, 1980, 30(4), 405–417
2. 
Albertson M.O., Chromatic number, independence ratio, and crossing number, Ars Math. Contemp., 2008, 1(1), 1–6
3. 
Bondy J.A., Murty U.S.R., Graph Theory with Applications, Elsevier, New York, 1976
4. 
Borodin O.V., Solution of the Ringel problem on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Metody Diskret. Analiz., 1984, 41, 12–26
5. 
Borodin O.V., A new proof of the 6-color theorem, J. Graph Theory, 1995, 19(4), 507–521
6. 
Borodin O.V., Kostochka A.V., Woodall D.R., List edge and list total colorings of multigraphs, J. Combin. Theory Ser. B, 1997, 71(2), 184–204
7. 
Cygan M., Hou J.-F., Kowalik Ł., Lužar B., Wu J.-L., A planar linear arboricity conjecture, J. Graph Theory, 2012, 69(4), 403–425
8. 
Erman R., Havet F., Lidický B., Pangrác O., 5-coloring graphs with 4 crossings, SIAM J. Discrete Math., 2011, 25(1), 401–422
9. 
Fabrici I., Madaras T., The structure of 1-planar graphs, Discrete Math., 2007, 307(7–8), 854–865
10. 
Jensen T.R., Toft B., Graph Coloring Problems, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, New York, 1995Google Scholar
11. 
Král D., Stacho L., Coloring plane graphs with independent crossings, J. Graph Theory, 2010, 64(3), 184–205
12. 
Li X., Average degrees of critical graphs, Ars Combin., 2005, 74, 303–322
13. 
Pach J., Tóth G., Graphs drawn with few crossings per edge, Combinatorica, 1997, 17(3), 427–439
14. 
Ringel G., Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg, 1965, 29, 107–117
15. 
Sanders D.P., Zhao Y., On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory, 1999, 31(1), 67–73
16. 
Sanders D.P., Zhao Y., Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B, 2001, 83(2), 201–212
17. 
Vizing V.G., Critical graphs with given chromatic class, Diskret. Analiz., 1965, 5, 9–17
18. 
Wu J.-L., On the linear arboricity of planar graphs, J. Graph Theory, 1999, 31(2), 129–134
19. 
Wu J., Wang P., List-edge and list-total colorings of graphs embedded on hyperbolic surfaces, Discrete Math., 2008, 308(4), 6210–6215
20. 
Wu J.-L., Wu Y.-W., The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory, 2008, 58(3), 210–220
21. 
Zhang X., Hou J., Liu G., On total colorings of 1-planar graphs, preprint available at http://xinzhang.hpage.com/get_file.php?id=1513981&vnr=342077
22. 
Zhang X., Wu J.-L., On edge colorings of 1-planar graphs, Inform. Process. Lett., 2011, 111(3), 124–128
23. 
Zhang X., Wu J., Liu G., List edge and list total coloring of 1-planar graphs, Front. Math. China (in press), DOI: 10.1007/s11464-012-0184-7Google Scholar 