Central European Journal of Mathematics

, Volume 11, Issue 1, pp 188–195

# On the sum of digits of some sequences of integers

• Javier Cilleruelo
• Florian Luca
• Juanjo Rué
• Ana Zumalacárregui
Research Article

## Abstract

Let b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences {a n } n=1 that for almost all n the sum of digits of a n in base b is at least c b log n, where c b is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.

## Keywords

Sum of digits Bell numbers

11A63 11B73

## Preview

Unable to display preview. Download preview PDF.

## References

1. [1]
Bender E.A., Gao Z., Asymptotic enumeration of labelled graphs with a given genus, Electron. J. Combin., 2011, 18(1), #P13Google Scholar
2. [2]
Chapuy G., Fusy É., Giménez O., Mohar B., Noy M., Asymptotic enumeration and limit laws for graphs of fixed genus, J. Combin. Theory Ser. A, 2011, 118(3), 748–777
3. [3]
Cilleruelo J., Squares in (12 + 1) … (n 2 + 1), J. Number Theory, 2008, 128(8), 2488–2491
4. [4]
Evertse J.-H., Schlickewei H.P., Schmidt W.M., Linear equations in variables which lie in a multiplicative group, Ann. of Math., 2002, 155(2), 807–836
5. [5]
Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, Cambridge, 2009
6. [6]
Giménez O., Noy M., Asymptotic enumeration and limit laws of planar grahs, J. Amer. Math. Soc., 2009, 22(2), 309–329
7. [7]
Giménez O., Noy M., Rué J., Graph classes with given 3-connected components: asymptotic enumeration and random graphs, Random Structures Algorithms (in press)Google Scholar
8. [8]
Knopfmacher A., Luca F., Digit sums of binomial sums, J. Number Theory, 2012, 132(2), 324–331
9. [9]
Luca F., Distinct digits in base b expansions of linear recurrence sequences, Quaest. Math., 2000, 23(4), 389–404
10. [10]
Luca F., The number of non-zero digits of n!, Canad. Math. Bull., 2002, 45(1), 115–118
11. [11]
Luca F., On the number of nonzero digits of the partition function, Arch. Math. (Basel), 2012, 98(3), 235–240
12. [12]
Luca F., Shparlinski I.E., On the g-ary expansions of Apéry, Motzkin, Schröder and other combinatorial numbers, Ann. Comb., 2010, 14(4), 507–524
13. [13]
Luca F., Shparlinski I.E., On the g-ary expansions of middle binomial coefficients and Catalan numbers, Rocky Mountain J. Math., 2011, 41(4), 1291–1301
14. [14]
Stewart C.L., On the representation of an integer in two different bases, J. Reine Angew. Math., 1980, 319, 63–72

© Versita Warsaw and Springer-Verlag Wien 2012

## Authors and Affiliations

• Javier Cilleruelo
• 1
• 2
• Florian Luca
• 3
• Juanjo Rué
• 1
• Ana Zumalacárregui
• 1
• 2
1. 1.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)MadridSpain