Central European Journal of Mathematics

, Volume 8, Issue 4, pp 780–785 | Cite as

Border bases and kernels of homomorphisms and of derivations

Research Article
  • 29 Downloads

Abstract

Border bases are an alternative to Gröbner bases. The former have several more desirable properties. In this paper some constructions and operations on border bases are presented. Namely; the case of a restriction of an ideal to a polynomial ring (in a smaller number of variables), the case of the intersection of two ideals, and the case of the kernel of a homomorphism of polynomial rings. These constructions are applied to the ideal of relations and to factorizable derivations.

Keywords

Border basis Gröbner basis Factorizable derivation Ideal of relations 

MSC

13N15 13P10 68W30 12Y05 12H05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen Y.F., Meng X.H., Border bases of positive dimensional polynomial ideals, In: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, London, Ontario, July 25–27, ACM, New York, 2007, 65–71Google Scholar
  2. [2]
    Gianni P., Trager B., Zacharias G., Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 1988, 6(2–3), 149–167MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Kehrein A., Kreuzer M., Characterizations of border bases, J. Pure Appl. Algebra, 2005, 196(2–3), 251–270MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Kehrein A., Kreuzer M., Computing border bases, J. Pure Appl. Algebra, 2006, 205(2), 279–295MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Kehrein A., Kreuzer M., Robbiano L., An algebraist’s view on border bases, In: Solving polynomial equations, Algorithms Comput. Math., 14, Springer, Berlin, 2005, 169–202CrossRefGoogle Scholar
  6. [6]
    Kreuzer M., Robbiano L., Computational Commutative Algebra, 1&2, Springer, Berlin, 2000&2005MATHCrossRefGoogle Scholar
  7. [7]
    Nowicki A., Zielinski J., Rational constants of monomial derivations, J. Algebra, 2006, 302(1), 387–418MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Zieliński J., Factorizable derivations and ideals of relations, Comm. Algebra, 2007, 35(3), 983–997MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceNicholas Copernicus UniversityToruńPoland

Personalised recommendations