Advertisement

Central European Journal of Mathematics

, Volume 8, Issue 3, pp 500–536

# On the hierarchies of higher order mKdV and KdV equations

Research Article
• 85 Downloads

## Abstract

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces $$\hat H_s^r \left( \mathbb{R} \right)$$ defined by the norm
$$\left\| {v_0 } \right\|_{\hat H_s^r \left( \mathbb{R} \right)} : = \left\| {\left\langle \xi \right\rangle ^s \widehat{v_0 }} \right\|_{L_\xi ^{r'} } , \left\langle \xi \right\rangle = \left( {1 + \xi ^2 } \right)^{\frac{1} {2}} , \frac{1} {r} + \frac{1} {{r'}} = 1$$
.

Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s$$\frac{{2j - 1}} {{2r'}}$$. The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < $$\frac{{2j - 1}} {{2r'}}$$. The results for r = 2 — so far in the literature only if j = 1 (mKdV) or j = 2 — can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s (ℝ) for s$$\frac{{j + 1}} {2}$$, if j is odd, and for s$$\frac{j} {2}$$, if j is even. — The Cauchy problem for the jth equation in the KdV hierarchy with data in $$\hat H_s^r \left( \mathbb{R} \right)$$ cannot be solved by Picard iteration, if r > $$\frac{{2j}} {{2j - 1}}$$, independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s (ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in $$\hat H_s^r \left( \mathbb{R} \right)$$, if 1 < r$$\frac{{2j}} {{2j - 1}}$$ and $$s > j - \frac{3} {2} - \frac{1} {{2j}} + \frac{{2j - 1}} {{2r'}}$$. For KdV itself the lower bound on s is pushed further down to $$s > max\left( { - \frac{1} {2} - \frac{1} {{2r'}} - \frac{1} {4} - \frac{{11}} {{8r'}}} \right)$$, where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.

## Keywords

mKdV and KdV hierarchies Cauchy problem Local and global well-posedness Generalized Fourier restriction norm method

35Q53

## Preview

Unable to display preview. Download preview PDF.

## References

1. 
Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 1978, 61, 1–30
2. 
Avramidi I., Schimming R., A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., 2000, 219, 45–64
3. 
Banica V., Vega L., On the Dirac delta as initial condition for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25, 697–711
4. 
Cazenave T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003
5. 
Cazenave T., Vega L., Vilela M.C., A note on the nonlinear Schrödinger equation in weak L p spaces, Commun. Contemp. Math., 2001, 3, 153–162
6. 
Chern S.S., Peng C.K., Lie groups and KdV equations, Manuscripta Math., 1979, 28, 207–217
7. 
Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 2003, 125, 1235–1293
8. 
Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal., 2001, 179, 409–425
9. 
Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on ℝ and $$\mathbb{T}$$, J. Amer. Math. Soc., 2003, 16, 705–749
10. 
Fefferman C., Inequalities for strongly singular convolution operators, Acta Math., 1970, 124, 9–36
11. 
Foschi D., Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2005, 2, 1–24
12. 
Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Korteweg-deVries equation and generalization, VI, Methods for exact solution, Comm. Pure Appl. Math., 1974, 27, 97–133
13. 
Gardner C.S., Korteweg-de Vries equation and generalizations, IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys., 1971, 12, 1548–1551
14. 
Ginibre J., Tsutsumi Y., Velo G., On the Cauchy Problem for the Zakharov System, J. Funct. Anal., 1997, 151, 384–436
15. 
Grünrock A., An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004, 61, 3287–3308
16. 
Grünrock A., Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005, 41, 2525–2558
17. 
Grünrock A., Herr S., Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 2008, 39, 1890–1920
18. 
Grünrock A., Vega L., Local well-posedness for the modified KdV equation in almost critical $$\widehat{H_s^r }$$ -spaces, Trans. Amer. Math. Soc., 2009, 361, 5681–5694
19. 
Hörmander L., The analysis of linear partial differential operators, II, Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257, Springer-Verlag, Berlin, 1983Google Scholar
20. 
Kenig C.E., Ponce G., Vega L., Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J., 1991, 40, 33–69
21. 
Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 1993, 46, 527–620
22. 
Kenig C.E., Ponce G., Vega L., On the hierarchy of the generalized KdV equations, In: Ercolani N.M., Gabitov I.R., Levermore C.D., Serre D. (Eds.), Singular limits of dispersive waves, Proceedings of the NATO Advanced Research Workshop (École Normale Supérieure, Lyon, July 8–12, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 1994, 320, 347–356Google Scholar
23. 
Kenig C.E., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 1994, 122, 157–166
24. 
Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 1996, 9, 573–603
25. 
Kenig C.E., Ponce G., Vega L., Quadratic forms for the 1 — D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 1996, 348, 3323–3353
26. 
Kenig C.E., Ponce G., Vega L., On the illposedness of some canonical dispersive equations, Duke Math. J., 2001, 106, 617–633
27. 
Koch H., Tzvetkov N., On the local well-posedness of the Benjamin-Ono equation in H s(ℝ), Int. Math. Res. Not., 2003, 26, 1449–1464
28. 
Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries equation and generalizations, V, Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 1970, 11, 952–960
29. 
Kwon S., On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations, 2008, 245, 2627–2659
30. 
Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations, 2008, 01, 15 pp.Google Scholar
31. 
Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 1968, 21, 467–490
32. 
Lax P.D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 1975, 28, 141–188
33. 
Lax P.D., Almost periodic solutions of the KdV equation, SIAM Rev., 1976, 18, 351–375
34. 
Lax P.D., Outline of a theory of the KdV equation, In: Ruggeri T. (Ed.), Recent mathematical methods in nonlinear wave propagation, Lecture Notes in Mathematics, 1640, Springer, Berlin, 1996
35. 
Linares F., A higher order modified Korteweg-de Vries equation, Mat. Apl. Comput., 1995, 14, 253–267
36. 
Matsuno Y., Bilinear transformation method, Academic Press, Inc., Orlando, FL, 1984
37. 
Miura R.M., Korteweg-de Vries equation and generalizations, I, A remarkable explicit nonlinear transformation., J. Math. Phys., 1968, 9, 1202–1204
38. 
Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion, J. Math. Phys., 1968, 9, 1204–1209
39. 
Molinet L., Saut J.-C., Tzvetkov N., Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 2001, 33, 982–988
40. 
Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18, 1212–1215
41. 
Ovcharov E., Global regularity of nonlinear dispersive equations and Strichartz estimates, PhD thesis, University of Edinburgh, Edinburgh, UK, 2009Google Scholar
42. 
Perelman G., Vega L., Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations, 2007, 235, 56–73
43. 
Pilod D., On the Cauchy problem for higher-order nonlinear dispersive equations, J. Differential Equations, 2008, 245, 2055–2077
44. 
Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations, 1993, 102, 360–381
45. 
Saut J.-C., Quelques generalisations de l’equation de Korteweg — de Vries, II, J. Differential Equations, 1979, 33, 320–335 (in French)
46. 
Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 1987, 55, 699–715
47. 
Taggart R.J., Inhomogeneous Strichartz estimates, preprint available at arXiv:0802.4120Google Scholar
48. 
Vargas A., Vega L., Global wellposedness for 1D nonlinear Schrödinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. (9), 2001, 80, 1029–1044
49. 
Vilela M.C., Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 2007, 359, 2123–2136
50. 
Zheng Y.K., Chan W.L., Gauge transformation and the higher order Korteweg-de Vries equation, J. Math. Phys., 1988, 29, 308–314

## Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

## Authors and Affiliations

1. 1.Mathematisches InstitutHeinrich-Heine-UniversitätDüsseldorfGermany