Central European Journal of Chemistry

, Volume 12, Issue 12, pp 1271–1279 | Cite as

New genetic insights to consider coffee waste as feedstock for fuel, feed, and chemicals

  • Ryan M. Summers
  • Sridhar Gopishetty
  • Sujit K. Mohanty
  • Mani Subramanian
Research Article
  • 408 Downloads

Abstract

Caffeine is a natural plant product found in many drinks, including coffee, tea, soft and energy drinks. Due to caffeine’s presence in the environment, microorganisms have evolved two different mechanisms to live on caffeine. The genetic maps of the caffeine N-demethylation pathway and C-8 oxidation pathway have been discovered in Pseudomonas putida CBB5 and Pseudomonas sp. CBB1, respectively. These genes are the only characterized bacterial caffeine-degrading genes, and may be of great value in producing fine chemicals, biofuels, and animal feed from coffee and tea waste. Here, we present preliminary results for production of theobromine and 7-methylxanthine from caffeine and theobromine, respectively, by two strains of metabolically engineered E. coli. We also demonstrate complete decaffeination of tea extract by an immobilized mixed culture of Klebsiella and Rhodococcus cells. These processes provide a first level demonstration of biotechnological utilization of coffee and tea waste.

Keywords

Caffeine Coffee waste Pseudomonas putida CBB5 Pseudomonas sp. CBB1 N-demethylase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Statistics on Coffee, Historical Data, All exporting countries total production crop years 2010/11 to 2012/13 (International Coffee Organization, London, UK, 2013) http://www.ico.org/historical/2010-19/PDF/TOTPRODUCTION.pdf
  2. [2]
    Top 25 agricultural import commodities, with level of processing, by calendar year (United States Department of Agriculture, Washington D.C., USA, 2013) 1Google Scholar
  3. [3]
    Data for calendar year commencing: 2011, data sheet (International Coffee Organization, USA, 2011) http://www.ico.org/countries/usa.pdf.
  4. [4]
    M.R. Adams, J. Dougan, In: R.J. Clarke. R. Macrae, (Eds.), Waste Products, Coffee: Volume 2. Technology (Elsevier Applied Science Publishers, Ltd, Essex, England, 1987) 257–291Google Scholar
  5. [5]
    A. Pandey, C.R. Soccol, P. Nigam, D. Brand. R. Mohan, S. Roussos, Biochem. Eng. J. 6, 153 (2000)CrossRefGoogle Scholar
  6. [6]
    N. Kondamudi, S.K. Mohapatra, M. Misra, J. Agric. Food Chem. 56, 11757 (2008)CrossRefGoogle Scholar
  7. [7]
    G.R. Waller, Biologia Plantarum 31, 418 (1989)CrossRefGoogle Scholar
  8. [8]
    R.G. Hollingsworth, J.W. Amrstrong, E. Campbell, Nature 361, 1763 (1980)Google Scholar
  9. [9]
    J.A. Nathanson, Science 226, 184 (1984)CrossRefGoogle Scholar
  10. [10]
    A.S. Franca, L.S. Oliveira, In: G.S. Ashworth, P. Azevedo (Eds.), Agricultural Wastes, Coffee processing solid wastes: Current uses and future perspectives (Nova Science Publishers, Inc., New York, U. S. A., 2009) 171–189Google Scholar
  11. [11]
    R. Bressani, in: J.E. Braham, R. Bressani (Eds.), Coffee Pulp: Composition, Technology, and Utilization, Potential uses of coffee-berry by-products (International Development Research Centre, Ottawa, Ontario, Canada, 1979) 17–24Google Scholar
  12. [12]
    C. Porres, D. Alvarez, J. Calzada, Biotechnol. Adv. 11, 519 (1993)CrossRefGoogle Scholar
  13. [13]
    C.L. Yu, T.M. Louie, R. Summers, Y. Kale, S. Gopishetty, M. Subramanian, J. Bacteriol. 191, 4624 (2009)CrossRefGoogle Scholar
  14. [14]
    R.M. Summers, T.M. Louie, C.L. Yu. M. Subramanian, Microbiology 157, 583 (2011)CrossRefGoogle Scholar
  15. [15]
    R.M. Summers, T.M. Louie, C.L. Yu, L. Gakhar, K.C. Louie, M. Subramanian, J. Bacteriol. 194, 2041 (2012)CrossRefGoogle Scholar
  16. [16]
    R.M. Summers, J.L. Seffernick, E.M. Quandt. C.L. Yu, J.E. Barrick, M.V. Subramanian. J. Bacteriol. 195, 3933 (2013)CrossRefGoogle Scholar
  17. [17]
    C.L. Yu, Y. Kale, S. Gopishetty, T.M. Louie. M. Subramanian, J. Bacteriol. 190, 772 (2008)CrossRefGoogle Scholar
  18. [18]
    S.K. Mohanty, C.L. Yu, S. Das, T.M. Louie. L. Gakhar, M. Subramanian, J. Bacteriol. 194, 3872 (2012)CrossRefGoogle Scholar
  19. [19]
    C.A. Woolfolk, J. Bacteriol. 123, 1088 (1975)Google Scholar
  20. [20]
    R. Blecher, F. Lingens, Hoppe-Seyler’s Z. Physiol. Chem. 358, 807 (1977)CrossRefGoogle Scholar
  21. [21]
    Y. Asano, T. Komeda, H. Yamada, Biosci., Biotechnol., Biochem. 58, 2303 (1993)CrossRefGoogle Scholar
  22. [22]
    M. Glück, F. Lingens, Appl. Microbiol. Biotechnol. 28, 59 (1988)CrossRefGoogle Scholar
  23. [23]
    O.F.P. Sideso, A.C. Marvier, N.A. Katerelos. P.W. Goodenough, Int. J. Food Sci. Tech. 36, 693 (2001)CrossRefGoogle Scholar
  24. [24]
    W.J. Middelhoven, C.M. Bakker, Eur. J. Appl. Microbial. Biotechnol. 15, 214 (1982)CrossRefGoogle Scholar
  25. [25]
    D.M. Yamaoka-Yano, P. Mazzafera, Rev. Microbiol. 30, 62 (1999)CrossRefGoogle Scholar
  26. [26]
    W. Hohnloser, B. Osswal, F. Lingens, Hoppe-Seyler’s Z. Physiol. Chem. 361, 1763 (1980)CrossRefGoogle Scholar
  27. [27]
    P. Mazzafera, O. Olsson, G. Sandberg, Microb. Ecol. 31, 199 (1996)CrossRefGoogle Scholar
  28. [28]
    K.M. Madyastha, G.R. Sridhar, Biochem. Biophys. Res. Commun. 249, 178 (1998)CrossRefGoogle Scholar
  29. [29]
    K.M. Madyastha, G.R. Sridhar, B.B. Vadiraja. Y.S. Madhavi, Biochem. Biophys. Res. Commun. 263, 460 (1999)CrossRefGoogle Scholar
  30. [30]
    B.R. Mohapatra, N. Harris, R. Nordin, A. Mazumder, J. Biotechnol. 125, 319 (2006)CrossRefGoogle Scholar
  31. [31]
    V.R. Sarath Babu, S. Patra, M.S. Thakur. N.G. Karanth, M.C. Varadaraj, Enzyme Microb. Technol. 37, 617 (2005)CrossRefGoogle Scholar
  32. [32]
    S.S. Dash, S.N. Gummadi, J. Basic Microbiol. 48, 227 (2008)CrossRefGoogle Scholar
  33. [33]
    C.A. Woolfolk, J.S. Downard, J. Bacteriol. 130, 1175 (1977)Google Scholar
  34. [34]
    S.K. Mohanty, A. Genetic characterization of the caffeine C-8 oxidation pathway in Pseudomonas sp. CBB1. B. Validation of caffeine dehydrogenase as a suitable enzyme for a rapid caffeine diagnostic test, PhD thesis (University of Iowa, Iowa City, Iowa, U.S.A., 2013)Google Scholar
  35. [35]
    A.J. Link, D. Phillips, G.M. Church, J. Bacteriol. 179, 6228 (1997)Google Scholar
  36. [36]
    C.T. Chung, S.L. Niemela, R.H. Miller, Proc. Natl. Acad. Sci. U. S. A. 86, 2172 (1989)CrossRefGoogle Scholar
  37. [37]
    W. Seubert, J. Bacteriol. 79, 426 (1960)Google Scholar
  38. [38]
    S.R. Gopishetty, T.M. Louie, C.L. Yu. M.V. Subramanian, In: H.N. Thatoi, B.B. Mishra (Eds.), Microbial degradation of caffeine, methylxanthines, and its biotechnological applications, Microbial Biotechnology: Methods and Applications (Narosa Publishing House Pvt, Ltd, New Delhi, India, 2012) 44–67Google Scholar
  39. [39]
    P. Mazzafera, Scientia Agricola 59, 815 (2002)CrossRefGoogle Scholar
  40. [40]
    S. Roussos, L. Hannibal, M.A. Aquiahuatl. M.R.T. Hernandes, S. Marakis, J. Food Sci. Technol. 31, 316 (1994)Google Scholar
  41. [41]
    M. Hakil, F. Voisinet, G.V. Gonzalez, C. Augur, Process Biochem. 35, 103 (1999)CrossRefGoogle Scholar
  42. [42]
    D. Brand, A. Pandey, S. Roussos, C.R. Soccol, Enzyme Microb. Technol. 27, 127 (2000)CrossRefGoogle Scholar
  43. [43]
    C.V. Tagliari, R.K. Sanson, A. Zanette, R. Teixeira Franco, C.R. Soccol, Braz. J. Microbiol. 34, 102 (2003)CrossRefGoogle Scholar
  44. [44]
    S.N. Gummadi, B. Bhavya, N. Ashok, Appl. Microbiol. Biotechnol. 93, 545 (2012)CrossRefGoogle Scholar
  45. [45]
    K. Narasimharao, S. Mohapatra, M. Misra, J. Agric. Food Chem. 56, 11757 (2008)CrossRefGoogle Scholar
  46. [46]
    Y. Nishida, J. Pharm. Pharmacol. 43, 885 (1991)CrossRefGoogle Scholar
  47. [47]
    V. Schlotte, A. Sevanian, P. Hochstein. K.U. Weithmann, Free Radical Biol. Med. 25, 839 (1998)CrossRefGoogle Scholar
  48. [48]
    E.M. Quandt, M.J. Hammerling, R.M. Summers, P.B. Otoupal, B. Slater, R.N. Alnahhas, A. Dasgupta, J.L. Bachman, M.V. Subramanian, J.E. Barrick, ACS Synth. Biol. 2, 301 (2013)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Ryan M. Summers
    • 1
    • 2
  • Sridhar Gopishetty
    • 1
  • Sujit K. Mohanty
    • 1
    • 2
  • Mani Subramanian
    • 1
    • 2
  1. 1.Center for Biocatalysis and BioprocessingThe University of IowaCoralvilleUSA
  2. 2.Department of Chemical and Biochemical EngineeringThe University of IowaCoralvilleUSA

Personalised recommendations