Advertisement

Central European Journal of Chemistry

, Volume 12, Issue 12, pp 1262–1270 | Cite as

Biocatalytic designs for the conversion of renewable glycerol into glycerol carbonate as a value-added product

  • Madalina Tudorache
  • George Ghemes
  • Andreea Nae
  • Elena Matei
  • Ionel Mercioniu
  • Erhard Kemnitz
  • Benjamin Ritter
  • Simona Coman
  • Vasile I. Parvulescu
Research Article

Abstract

A comparative study of two different biocatalytic models, e.g. enzyme immobilized on magnetic particles (EIMP) and cross-linking enzyme aggregates onto magnetic particles (CLEMPA) was performed. The first model was designed as enzyme-immobilized on the magnetic particles surface (EIMP). The second model was constructed as a network structure with the enzyme aggregates and magnetic particles placed into the nodes and polyglutaraldehyde cross-linker as the network ledges. The design was called cross-linking enzyme aggregates onto magnetic particles (CLEMPA). The biocatalysts were prepared using lipase enzyme from Aspergillus niger for catalyzing the glycerol (Gly) conversion to glycerol carbonate (GlyC). The biocatalyst characteristics for both designs (EIMP and CLEMPA) were evaluated using scanning electron microscopy (SEM), laser light scattering (LLS) and UV-Vis techniques. The EIMP model was strongly influenced by the composition of the polymeric layer covering the particles surface, while the size of the magnetic particles affected mostly the CLEMPA design. Also, the biocatalytic capacity of the tested models was evaluated as maximum 52% Gly conversion with 90% GlyC selectivity for EIMP, and 73% Gly conversion with 77% GlyC selectivity for CLEMPA. Both biocatalytic models were successfully used to prepare GlyC from “crude” glycerol collected directly from the biodiesel process (e.g. 49% Gly conversion with 91% GlyC selectivity for EIMP and 70% Gly conversion with 80% GlyC selectivity for CLEMPA).

Keywords

Biocatalysis Immobilized lipase Glycerol and glycerol carbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Grunwald, Biocatalysis. Biochemical Fundaments and Applications (Imperial College Press, London, 2011)Google Scholar
  2. [2]
    P. Seufer-Wasserthal, Pharm. Tech. October, 53 (2010)Google Scholar
  3. [3]
    R.A. Sheldon, Org. Process Res. Dev. 15, 213 (2011)CrossRefGoogle Scholar
  4. [4]
    A.S. Bommarius, B.R. Riebel, Biocatalysis, (Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 2004)CrossRefGoogle Scholar
  5. [5]
    M. Tudorache, D. Mahalu, C. Teodorescu, R. Stan, C. Bala, V.I. Parvulescu, J. Mol. Catal. B: Enzym. 69, 133 (2011)CrossRefGoogle Scholar
  6. [6]
    C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. DGuisan, R. Fernandez-Lafuente, Enzyme Microb. Tech. 40, 1451 (2007)CrossRefGoogle Scholar
  7. [7]
    J.M. Palomo, G. Muñoz, G. Fernández-Lorente. C. Mateo, M. Fuentes, J.M. Guisan. R. Fernández-Lafuente, J. Mol. Catal B: Enzym. 21, 201 (2003)CrossRefGoogle Scholar
  8. [8]
    J.M. Palomo, C. Ortiz, G. Fernández-Lorente. M. Fuentes, J.M. Guisán, R. Fernández-Lafuente, Enzyme Microb. Tech. 36, 447 (2005)CrossRefGoogle Scholar
  9. [9]
    R. Fernandez-Lafuente, J. Mol. Catal. B: Enzym. 62, 197 (2010)CrossRefGoogle Scholar
  10. [10]
    G. Bayramoglu, B. Kaya, M.Y. Arica, Food Chem. 92, 261 (2005)CrossRefGoogle Scholar
  11. [11]
    R.A. Sheldon, Appl. Microbiol. Biot. 92, 467 (2011)CrossRefGoogle Scholar
  12. [12]
    M.M.M. Elnashar, J. Biomat. Nanobiot. 1, 61 (2010)CrossRefGoogle Scholar
  13. [13]
    M. Tudorache, A. Nae, S. Coman, V.I. Parvulescu, RSC Adv. 3, 4052 (2013)CrossRefGoogle Scholar
  14. [14]
    M. Aresta, A. Dibenedetto, F. Nocito, C. Ferragina, J. Catal. 268, 106 (2009)CrossRefGoogle Scholar
  15. [15]
    C. Magniont, G. Escadeillas, C. Oms-Multon. P. De Caro, Cement Concrete Res. 40, 1072 (2010)CrossRefGoogle Scholar
  16. [16]
    A. Behr, J. Eilting, K. Irawadi, J. Leschinski. F. Lindner, Green Chem. 10, 13 (2008)CrossRefGoogle Scholar
  17. [17]
    S.C. Kim, Y.H. Kim, H. Lee, D.Y. Yoon, B.K. Song, J. Mol. Catal. B: Enzym. 49, 75 (2007)CrossRefGoogle Scholar
  18. [18]
    E.Y. Lee, K.H. Lee, C.-H. Park, Bioproc. Biosys. Eng. 33, 1059 (2010)CrossRefGoogle Scholar
  19. [19]
    M. Tudorache, L. Protesescu, S. Coman. V.I. Parvulescu, Green Chem. 14, 478 (2012)CrossRefGoogle Scholar
  20. [20]
    M. Tudorache, A. Negoi, B. Tudora, V.I. Parvulescu, Appl. Catal. B-Environ. 146, 274 (2014)CrossRefGoogle Scholar
  21. [21]
    M. Tudorache, L. Protesescu, A. Negi. V.I. Parvulescu, Appl. Catal. A-Gen. 437–438, 90 (2012)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Madalina Tudorache
    • 1
  • George Ghemes
    • 1
  • Andreea Nae
    • 1
  • Elena Matei
    • 2
  • Ionel Mercioniu
    • 2
  • Erhard Kemnitz
    • 3
  • Benjamin Ritter
    • 3
  • Simona Coman
    • 1
  • Vasile I. Parvulescu
    • 1
  1. 1.Department of Organic Chemistry, Biochemistry and CatalysisUniversity of BucharestBucharestRomania
  2. 2.National Institute of Materials PhysicsBucharest-Magurele, IlfovRomania
  3. 3.Department of Chemistry Humboldt-Universität zu BerlinBerlin-AdlershofGermany

Personalised recommendations