Central European Journal of Chemistry

, Volume 12, Issue 5, pp 612–623

Experimental and theoretical studies on the photodegradation of 2-ethylhexyl 4-methoxycinnamate in the presence of reactive oxygen and chlorine species

  • Alicja Gackowska
  • Maciej Przybyłek
  • Waldemar Studziński
  • Jerzy Gaca
Research Article

Abstract

2-Ethylhexyl 4-methoxycinnamate (EHMC) is one of the most commonly used sunscreen ingredient. In this study we investigated photodegradation of EHMC in the presence of such common oxidizing and chlorinating systems as H2O2, H2O2/HCl, H2O2/UV, and H2O2/HCl/UV. Reaction products were detected by gas chromatography with a mass spectrometric detector (GC-MS). As a result of experimental studies chloro-substituted 4-methoxycinnamic acid (4-MCA), 4-methoxybenzaldehyde (4-MBA) and 4-methoxyphenol (4-MP) were identified. Experimental studies were enriched with DFT and MP2 calculations. We found that reactions of 4-MCA, 4-MBA and 4-MP with Cl2 and HOCl were in all cases thermodynamically favorable. However, reactivity indices provide a better explanation of the formation of particular chloroorganic compounds. Generally, those isomeric forms of mono- and dichlorinated compounds which exhibits the highest hardness were identified. Nucleophilicity of the chloroorganic compounds precursors were examined by means of the Fukui function.

Keywords

2-ethylhexyl 4-methoxycinnamate Chlorination Oxidation Photodegradation Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Dobashi, T. Yuyama, Y. Ohkatsu, Polym. Degrad. Stab. 92, 1227 (2007)CrossRefGoogle Scholar
  2. [2]
    V. S. Sivokhin, Polym. Sci. USSR 21, 1207 (1980)CrossRefGoogle Scholar
  3. [3]
    A. Kikuchi, H. Saito, M. Mori, M. Yagi, Photochem. Photobiol. Sci. 10, 1902 (2011)CrossRefGoogle Scholar
  4. [4]
    A. J.M. Santos, M.S. Miranda, J.C.G. Esteves da Silva, Water Res. 46, 3167 (2012)CrossRefGoogle Scholar
  5. [5]
    A. J.M. Santos, D.M.A. Crista, M.S. Miranda, I.F. Almeida, J.P. Sousa e Silva, P.C. Costa, M.H. Amaral, P.A.L. Lobão, J.M. Sousa Lobo, J.C.G. Esteves da Silva, Environ. Chem. 10, 127 (2013)CrossRefGoogle Scholar
  6. [6]
    M. S. Miranda, L. Pinto da Silva, J.C.G. Esteves da Silva, J. Phys. Org. Chem. 27, 47 (2014)CrossRefGoogle Scholar
  7. [7]
    Y. T. Chen, Y.T. Lin, C.C. Li, S.F. Sie, Y.W. Chen-Yang, Colloids Surf. B 115, 191 (2014)CrossRefGoogle Scholar
  8. [8]
    Z. A. Lewicka, W.W. Yu, B.L. Oliva, E.Q. Contreras, V.L. Colvin, J. Photochem. Photobiol. A, 263, 24 (2013)CrossRefGoogle Scholar
  9. [9]
    L. Zhou, Y. Ji, C. Zeng, Y. Zhang, Z. Wang, X. Yang, Water Res., 47, 153 (2013)CrossRefGoogle Scholar
  10. [10]
    Y. Ji, L. Zhou, Y. Zhang, C. Ferronato, M. Brigante, G. Mailhot, X. Yang, J.-M. Chovelon, Water Res. 47, 5865 (2013)CrossRefGoogle Scholar
  11. [11]
    A. Christiansson, J. Eriksson, D. Teclechiel, Å. Bergman, Environ. Sci. Pollut. Res. 16, 312 (2009)CrossRefGoogle Scholar
  12. [12]
    L. A. MacManus-Spencer, M.L. Tse, J.L. Klein, A.E. Kracunas, Environ. Sci. Technol. 45, 3931 (2011)CrossRefGoogle Scholar
  13. [13]
    C. Ferrari, H. Chen, R. Lavezza, C. Santinelli, I. Longo, E. Bramanti, Int. J. Photoenergy 2013, 1 (2013)CrossRefGoogle Scholar
  14. [14]
    V. Nikolić, D. Ilić, L. Nikolić, M. Stanković, M. Cakić, L. Stanojević, A. Kapor, M. Popsavin, Cent. Eur. J. Chem. 8, 744 (2010)CrossRefGoogle Scholar
  15. [15]
    A. Y.C. Tong, R. Braund, D.S. Warren, B.M. Peake, Cent. Eur. J. Chem. 10, 989 (2012)CrossRefGoogle Scholar
  16. [16]
    S. Pattanaargson, P. Limphong, Int. J. Cosmetic. Sci. 23, 153 (2001)CrossRefGoogle Scholar
  17. [17]
    N. Tarras-Wahlberg, G. Stenhagen, O. Larkö, A. Rosén, A.-M. Wennberg, O. Wennerström, J. Invest. Dermatol. 113, 547 (1999)CrossRefGoogle Scholar
  18. [18]
    J. Gaca, S. Żak Hydrogen peroxide and chlorides, examples of application and theoretical aspects (University of Technology and Agriculture in Bydgoszcz Publishers, Poland, 2004) (in Polish)Google Scholar
  19. [19]
    M. Nakajima, T. Kawakami, T. Niino, Y. Takahashi, S. Onodera, J. Health. Sci. 55, 363 (2009)CrossRefGoogle Scholar
  20. [20]
    A. Gackowska, J. Gaca, Chemik 4, 301 (2011)Google Scholar
  21. [21]
    N. Higashi, A. Ikehata, N. Kariyama, Y. Ozaki, Appl. Spectrosc. 62, 1022 (2008)CrossRefGoogle Scholar
  22. [22]
    P. Cysewski, A. Gackowska, J. Gaca, Chemosphere 63, 165 (2006)CrossRefGoogle Scholar
  23. [23]
    C. W. Jones, Applications of hydrogen peroxide and derivatives (Royal Society of Chemistry, Cambridge 1999)Google Scholar
  24. [24]
    A. D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  25. [25]
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  26. [26]
    B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989)CrossRefGoogle Scholar
  27. [27]
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  28. [28]
    S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981)CrossRefGoogle Scholar
  29. [29]
    S. Miertuš, J. Tomasi, Chem. Phys. 65, 239 (1982)CrossRefGoogle Scholar
  30. [30]
    M. J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E. 01 (Gaussian, Inc., Pittsburgh PA, 2004)Google Scholar
  31. [31]
    R. G. Pearson, Proc. Natl. Acad. Sci. USA 83, 8440 (1986)CrossRefGoogle Scholar
  32. [32]
    R. G. Parr, L. von Szentpály, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)CrossRefGoogle Scholar
  33. [33]
    C. Møller, M.S. Plesset, Phys. Rev. 46, 0618 (1934)CrossRefGoogle Scholar
  34. [34]
    M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 153, 503 (1988)CrossRefGoogle Scholar
  35. [35]
    S. Saebø, J. Almlöf, Chem. Phys. Lett. 154, 83 (1989)CrossRefGoogle Scholar
  36. [36]
    M. J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990)CrossRefGoogle Scholar
  37. [37]
    M. J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 281 (1990)CrossRefGoogle Scholar
  38. [38]
    M. Head-Gordon, T. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994)CrossRefGoogle Scholar
  39. [39]
    J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 13, 3839 (1972)CrossRefGoogle Scholar
  40. [40]
    T. M. Krygowski, M.K. Cyrański, Z. Czarnocki, G. Haäfelinger, A.R. Katritzky, Tetrahedron 56, 1783 (2000)CrossRefGoogle Scholar
  41. [41]
    W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108, 5708 (1986)CrossRefGoogle Scholar
  42. [42]
    S. Pattanaargson, T. Munhapol, P. Hirumsupachot, P. Luangthongaram, J. Photochem. Photobiol. A 161, 269 (2004)Google Scholar
  43. [43]
    S. P. Huong, V. Andrieu, J.-P. Reynier, E. Rocher, J.-D. Fourneron, J. Photochem. Photobiol. A 186, 65 (2007)CrossRefGoogle Scholar
  44. [44]
    P. Renard, F. Siekmann, A. Gandolfo, J. Socorro, G. Salque, S. Ravier, E. Quivet, J.-L. Clément, M. Traikia, A.-M. Delort, D. Voisin, V. Vuitton, R. Thissen, A. Monod, Atmos. Chem. Phys. 13, 6473 (2013)CrossRefGoogle Scholar
  45. [45]
    N. De la Cruz, J. Giménez, S. Esplugas, D. Grandjean, L.F. de Alencastro, C. Pulgarín Water Res. 46, 1947 (2012)CrossRefGoogle Scholar
  46. [46]
    M. Czaplicka, J. Hazard. Mater. 134, 45 (2006)CrossRefGoogle Scholar
  47. [47]
    X. -W. Li, E. Shibata, T. Nakamura, Mater. Trans. 44, 2441 (2003)CrossRefGoogle Scholar
  48. [48]
    M. V. Roux, M. Temprado, J.S. Chickos, Y. Nagano, J. Phys. Chem. Ref. Data 37, 1855 (2008)CrossRefGoogle Scholar
  49. [49]
    V. A. Platonov, Yu.N. Simulin Russ. J. Phys. Chem. 59, 179 (1985)Google Scholar
  50. [50]
    J. D. Cox, D.D. Wagman, V.A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere Publishing Corp, New York, 1984)Google Scholar
  51. [51]
    M. W. Chase, NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Monograph 9, 4th edition (American Chemical Society, American Institute of Physics, Washington, DC, 1998)Google Scholar
  52. [52]
    M. Bekbolet, Z. Çınar, M. Kılıç, C.S. Uyguner, C. Minero, E. Pelizzetti, Chemosphere 75, 1008 (2009)CrossRefGoogle Scholar
  53. [53]
    E. Zahedi, S. Ali-Asgari, V. Keley, Cent. Eur. J. Chem. 8, 1097 (2010)CrossRefGoogle Scholar
  54. [54]
    R. Taylor, in: C.H. Bamford, C.F.H. Tipper (Eds.), Comprehensive chemical kinetics, (Elsevier Publishing Co, Amsterdam/New York, 1972) Volume 13: Reactions of aromatic compounds, 1Google Scholar
  55. [55]
    G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955)CrossRefGoogle Scholar
  56. [56]
    T. E. Jones, J. Phys. Chem. A 116, 4233 (2012)CrossRefGoogle Scholar
  57. [57]
    Md. E.U. Hoque, H.W. Lee, Bull. Korean. Chem. Soc. 32, 2109 (2011)CrossRefGoogle Scholar
  58. [58]
    M. Przybyłek, J. Gaca, Chem. Pap. 66, 699 (2012)CrossRefGoogle Scholar
  59. [59]
    V. Benin, J. Mol. Struc. (Theochem) 764, 21 (2006)CrossRefGoogle Scholar
  60. [60]
    H. D. Banks, J. Org. Chem. 68, 2639 (2003)CrossRefGoogle Scholar
  61. [61]
    C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91, 165 (1991)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Alicja Gackowska
    • 1
  • Maciej Przybyłek
    • 2
  • Waldemar Studziński
    • 1
  • Jerzy Gaca
    • 1
  1. 1.Faculty of Chemical Technology and EngineeringUniversity of Technology and Life ScienceBydgoszczPoland
  2. 2.Department of Physical Chemistry, Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland

Personalised recommendations