Advertisement

Central European Journal of Chemistry

, Volume 12, Issue 9, pp 909–917 | Cite as

Temperature effect over structure and photochemical properties of nanostructured SnO2 powders

  • Ana-Maria Ungureanu
  • Ovidiu OpreaEmail author
  • Bogdan Stefan Vasile
  • Corina Andronescu
  • Georgeta Voicu
  • Ioana Jitaru
RICCCE 18

Abstract

We successfully synthesized tin dioxide nanoparticles with polyhedral morphology via an ethylene glycol assisted sol-gel approach. The structural characteristics of three tin dioxide samples were investigated after being thermally treated at 400°C, 600°C and 800°C. X-ray diffraction (XRD) patterns clearly show the formation of single phase tin dioxide nanoparticles, with crystallite size of 6–20 nm, in good correlation with Fourier transform infrared (FTIR) spectra. Transmission electron microscopy (TEM) analysis confirms the formation of 6nm polyhedral nanoparticles for the 400°C sample. Ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectra suggest a high concentration of oxygen vacancies. The oxygen vacancy concentration increases with temperature, due to the combined action of the formation of VO and the energetic O compensation. X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of single phase tin dioxide and the presence of oxygen vacancies in good agreement with UV-VIS and PL data.

Keywords

Tin dioxide Thermal treatment Sol-gel Luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11532_2013_400_MOESM1_ESM.pdf (252 kb)
Supplementary material, approximately 210 KB.

References

  1. [1]
    M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)CrossRefGoogle Scholar
  2. [2]
    S. Mohanty, S. Ravi, Solid State Commun. 150, 739 (2010)CrossRefGoogle Scholar
  3. [3]
    H. Pirmoradi, J. Malakootikhah, M. Karimipour, A. Ahmadpour, N. Shahtahmasebi, F.E. Koshky, Middle-East J. Sci. Res. 8, 253 (2011)Google Scholar
  4. [4]
    R. Parra, L.A. Ramajo, M.S. Goes, J.A. Varela, M.S. Castro, Mater. Res. Bull. 43, 3202 (2008)CrossRefGoogle Scholar
  5. [5]
    X.L. Wang, Z.X. Dai, Z. Zeng, J. Phys-Condens. Mat. 20, 045214 (2008).CrossRefGoogle Scholar
  6. [6]
    G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, M. Pardo, A. Ponzoni, A. Vomiero, Thin Solid Films. 517, 6156 (2009)CrossRefGoogle Scholar
  7. [7]
    J.H. Im, J.H. Lee, D.W. Park, Surf. Coat. Tech. 202, 5471, (2008)CrossRefGoogle Scholar
  8. [8]
    Q.H. Wu, J. Song, J.C. Li, Surf. Interface Anal. 40, 1488 (2008)CrossRefGoogle Scholar
  9. [9]
    T.J. Stanimirova, P.A. Atanasov, I.G. Dimitrov, A.O. Dikovska, J. Optoelectron. Adv. M. 7, 1335 (2005)Google Scholar
  10. [10]
    Z.W. Chen, J.K.L. Lai, C.H. Shek, H.D. Chen, J. Mater. Res. 18, 1289 (2003)CrossRefGoogle Scholar
  11. [11]
    M. Krishna, S. Komarneni, Ceram. Int. 35, 3375 (2009)CrossRefGoogle Scholar
  12. [12]
    K. Anandan, V. Rajendran, Journal of Non-Oxide Glasses. 2, 83 (2010)Google Scholar
  13. [13]
    H.L. Zhu, D.R. Yang, G.X. Yu, H. Zhang, K.H. Yao, Nanotechnology. 17, 2386 (2006)CrossRefGoogle Scholar
  14. [14]
    S.M. Zhu, D. Zhang, J.J. Gu, J.Q. Xu, J.P. Dong, J.L. Li, J. Nanopart. Res. 12, 1389 (2010)CrossRefGoogle Scholar
  15. [15]
    M. Ristic, M. Ivanda, S. Popovic, S. Music, J. Non-Cryst. Solids. 303, 270 (2002)CrossRefGoogle Scholar
  16. [16]
    R.N. Mariammal, N. Rajamanickam, K. Ramachandran, J. Nano-Electron. Phys. 3, 92 (2011)Google Scholar
  17. [17]
    H. Taib, C.C. Sorrell, J.Aust. Ceram. Soc. 43, 56 (2007)Google Scholar
  18. [18]
    F. Li, L.Y. Chen, Z.Q. Chen, J.Q. Xu, J.M. Zhu, X.Q. Xin, Mater. Chem. Phys. 73, 335 (2002)CrossRefGoogle Scholar
  19. [19]
    M.P. Singh, P.S. Chandi, R.C. Singh, J. Optoelectron. Adv. M. 9, 3275 (2007)Google Scholar
  20. [20]
    J.R. Zhang, L. Gao, J. Solid State Chem. 177, 1425 (2004)CrossRefGoogle Scholar
  21. [21]
    R.S. Niranjan, Y.K. Hwang, D.K. Kim, S.H. Jhung, J.S. Chang, I.S. Mulla, Mater. Chem. Phys. 92, 384 (2005)CrossRefGoogle Scholar
  22. [22]
    S. Shukla, S. Patil, S.C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, S. Seal, Sensor Actuat B-Chem. 96, 343 (2003)CrossRefGoogle Scholar
  23. [23]
    S. Gnanam, V. Rajendran, Dig. J. Nanomater. Bios. 5, 699 (2010)Google Scholar
  24. [24]
    S. Gnanam, V. Rajendran, J. Optoelectron. Adv. M. 12, 2199 (2010)Google Scholar
  25. [25]
    C. Junin, M. Krissanasaeranee, A.M. Jamieson, S. Wongkasemjit, Chiang Mai J. Sci. 32, 385 (2005)Google Scholar
  26. [26]
    G. Zhang, M. Liu, J. Mater. Sci. 34, 3213 (1999)CrossRefGoogle Scholar
  27. [27]
    A.R. Babar, S.S. Shinde, A.V. Moholkar, K.Y. Rajpure, J. Alloy. Compd. 505, 743 (2010)CrossRefGoogle Scholar
  28. [28]
    Z. Yang, et al., Electrochim. Acta. 55, 5485 (2010)CrossRefGoogle Scholar
  29. [29]
    Y. Masuda, Prog. Cryst. Growth Ch. 58, 106 (2012)CrossRefGoogle Scholar
  30. [30]
    J. Szuber, G. Czempik, R. Larciprete, D. Koziej, B. Adamowicz, Thin Solid Films 391, 198 (2001)CrossRefGoogle Scholar
  31. [31]
    D. Amalric-Popescu, F. Bozon-Verduraz, Catal. Today. 70, 139 (2001)CrossRefGoogle Scholar
  32. [32]
    O. Acarbas, E. Suvaci, A. Dogan, Ceram. Int. 33, 537 (2007)CrossRefGoogle Scholar
  33. [33]
    M. Epifani, M. Alvisi, L. Mirenghi, G. Leo, P. Siciliano, L. Vasanelli, J. Am. Ceram. Soc. 84, 48 (2001)CrossRefGoogle Scholar
  34. [34]
    J. Jouhannaud, J. Rossignol, D. Stuerga, J. Solid State Chem. 181, 1439 (2008)CrossRefGoogle Scholar
  35. [35]
    O.R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, J. Nanopart. Res. 14, 1269 (2012).CrossRefGoogle Scholar
  36. [36]
    M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31 (2013)CrossRefGoogle Scholar
  37. [37]
    M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Yousseffi, M. Shokooh-Saremi, Physica B. 403, 2431 (2008)CrossRefGoogle Scholar
  38. [38]
    F. Davar, F. Mohandes, M. Salavati-Niasari, Polyhedron. 29, 3132 (2010)CrossRefGoogle Scholar
  39. [39]
    N. Talebian, F. Jafarinezhad, Ceram. Int. 39, 8311 (2013)CrossRefGoogle Scholar
  40. [40]
    H.H. Son, W.G. Lee, J. Ind. Eng. Chem. 18, 317 (2012)CrossRefGoogle Scholar
  41. [41]
    A. Gaber, A.Y. Abdel-Latief, M.A. Abdel-Rahim, M.N. Abdel-Salam, Mat. Sci. Semicon. Proc. 16, 1784 (2013)CrossRefGoogle Scholar
  42. [42]
    M.A. El Khakani, R. Dolbec, A.M. Serventi, M.C. Horrillo, M. Trudeau, R.G. Saint-Jacques, D.G. Rickerby, I. Sayago, Sensor. Actuat. B-Chem. 77, 383 (2001)CrossRefGoogle Scholar
  43. [43]
    O. Oprea, E. Andronescu, B.S. Vasile, G. Voicu, C. Covaliu, Dig. J. Nanomater. Bios. 6, 1393 (2011)Google Scholar
  44. [44]
    W.F. Zhang, Z. Yin, M.S. Zhang, Z.L. Du, W.C. Chen, J. Phys-Condens. Mat. 11, 5655 (1999)CrossRefGoogle Scholar
  45. [45]
    W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B-Lasers O. 70, 261 (2000)CrossRefGoogle Scholar
  46. [46]
    W.F. Zhang, M.S. Zhang, Z. Yin, Phys. Status Solidi A. 179, 319 (2000)CrossRefGoogle Scholar
  47. [47]
    D. Gingasu, O. Oprea, I. Mindru, D.C. Culita, L. Patron, Dig. J. Nanomater. Bios. 6, 1215 (2011)Google Scholar
  48. [48]
    S. Das, S. Kar, S. Chaudhuri, J. Appl. Phys. 99, 114303 (2006).CrossRefGoogle Scholar
  49. [49]
    Y. Zhu, Y. Chen, X. Zhang, Eur. J. Chem. 2, 8 (2011)CrossRefGoogle Scholar
  50. [50]
    H.W. Seo, S.Y. Bae, J. Park, H.N. Yang, K.S. Park, S. Kim, J. Chem. Phys. 116, 9492 (2002)CrossRefGoogle Scholar
  51. [51]
    F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451 (2003)CrossRefGoogle Scholar
  52. [52]
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
  53. [53]
    F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 25, 59 (2004)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Ana-Maria Ungureanu
    • 1
  • Ovidiu Oprea
    • 1
    Email author
  • Bogdan Stefan Vasile
    • 1
  • Corina Andronescu
    • 1
  • Georgeta Voicu
    • 1
  • Ioana Jitaru
    • 1
  1. 1.Faculty of Applied Chemistry and Materials ScienceUniversity Politehnica of BucharestBucharestRomania

Personalised recommendations