Central European Journal of Chemistry

, Volume 12, Issue 4, pp 509–518 | Cite as

Interfacial behavior of water bound to nitrocellulose containing residual nitric and sulfuric acids

  • Vladimir M. Gun’koEmail author
  • Waldemar Tomaszewski
  • Tetyana V. Krupska
  • Konstantin V. Turov
  • Roman Leboda
  • Vladimir V. Turov
Research Article


To prepare nitrocellulose (NC), microcrystalline cellulose was treated in a mixture of nitric and sulfuric acids. Prepared NC containing a small amount of acids was studied at a different hydration degree (h = 10–1000 mg g−1) in different dispersion media (chloroform-d, acetone-d6 or their mixtures) using low-temperature 1H NMR spectroscopy. The hydration degree and the presence of residual acids affected the temperature dependence of the chemical shifts of proton resonance of water bound to NC. The Gibbs free energy of bound water became less negative with increasing hydration rate. The chloroform and acetone media affect the behavior of bound-to-NC water unfrozen at T<273 K differently. Quantum chemical calculations were performed using ab initio (HF/6-31G(d,p)), DFT (B3LYP/6-31G(d,p)) and semiempirical PM7 methods to analyze the interfacial behavior of water interacting with NC containing residual amounts of nitric and sulfuric acids.


Nitrocellulose Adsorbed water Co-adsorbed organic solvents Residual nitric and sulfuric acids Low-temperature 1H NMR spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.Yu. Orlova, Chemistry of High Explosives (Chemistry, Leningrad, 1973) (in Russian)Google Scholar
  2. [2]
    P.C. Painter, M.M. Coleman, Essentials of Polymer Science and Engineering (DEStech Publications, Inc., Lancaster, USA, 2009)Google Scholar
  3. [3]
    R. Talbert, Paint Technology Handbook (Grand Rapids, Michigan, USA, 2007)CrossRefGoogle Scholar
  4. [4]
    T. Cheeseright, M. Mackey, S. Rose, J.G. Vinter, Expert Opin. Drug Discov. 2, 131 (2007)CrossRefGoogle Scholar
  5. [5]
    TorchLite 10.0.1 www (accessed Sept 4, 2013)
  6. [6]
    A. Beveridge (Ed.), Forensic Investigations of Explosions (Taylor & Francis, London, 2003)Google Scholar
  7. [7]
    T. Urbanski, Chemistry and Technology of Explosives (Pergamon Press, New York, 1964) vol. 2Google Scholar
  8. [8]
    V.I. Gindich, L.V. Zabelin, G.N. Marchenko, Production of Cellulose Nitrates. Technology and Equipment (Central Research Institute of Scientific and Technical Information, Moscow, 1984) (in Russian)Google Scholar
  9. [9]
    J.A. Pople, W.G. Schneider, H.J. Bernstein, High-Resolution Nuclear Magnetic Resonance (McGraw-Hill Book Company, New York 1959)Google Scholar
  10. [10]
    V.M. Gun’ko et al., Adv. Colloid Interface Sci. 118, 125 (2005)Google Scholar
  11. [11]
    V.M. Gun’ko, V.V. Turov, Nuclear Magnetic Resonance Studies of Interfacial Phenomena (CRC Press, Boca Raton, 2013)CrossRefGoogle Scholar
  12. [12]
    V.V. Turov et al., Colloids Surf. A: Physicochem. Eng. Aspects 390, 48 (2011)CrossRefGoogle Scholar
  13. [13]
    V.M. Gun’ko et al., J. Colloid Interface Sci. 368, 263 (2012)CrossRefGoogle Scholar
  14. [14]
    V.M. Gun’ko et al., Carbon 57, 191 (2013)CrossRefGoogle Scholar
  15. [15]
    V.M. Gun’ko et al., Adsorption 19, 305 (2013)CrossRefGoogle Scholar
  16. [16]
    Yu.E. Shapiro, Prog. Polymer Sci. 36, 1184 (2011)CrossRefGoogle Scholar
  17. [17]
    G.K. Buckee, J. Inst. Brew. 100, 57 (1994)CrossRefGoogle Scholar
  18. [18]
    V.P. Glushko (Ed.), Handbook of Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978) (in Russian)Google Scholar
  19. [19]
    D.P. Gallegos, K. Munn, D.M. Smith, D.L. Stermer, J. Colloid Interface Sci. 119, 127 (1986)CrossRefGoogle Scholar
  20. [20]
    J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett. 71, 3589 (1993)CrossRefGoogle Scholar
  21. [21]
    J. Mitchell, J.B.W. Webber, J.H. Strange, Physics Reports 461, 1 (2008)CrossRefGoogle Scholar
  22. [22]
    O.V. Petrov, I. Furó, Prog. Nuclear Magn. Reson. Spectr. 54, 97 (2009)CrossRefGoogle Scholar
  23. [23]
    M. J. Frisch et al, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013)Google Scholar
  24. [24]
    A. A. Granovsky, J. Chem. Phys. 134, 214113 (2011)CrossRefGoogle Scholar
  25. [25]
    A.V. Marenich, C.J. Cramer, D.G. Truhlar, J. Phys. Chem. B 113, 6378 (2009)CrossRefGoogle Scholar
  26. [26]
    J.J.P. Stewart, MOPAC 2012, Versions 13.234W and 13.234L (Stewart Computational Chemistry, Colorado Springs, CO, USA, 2013) Google Scholar
  27. [27]
    V.M. Gun’ko, J. Theor. Comput. Chem. 2, 1 (2013)Google Scholar
  28. [28]
    I.P. Gragerov, V.K. Pogorelyi, I.F. Franchuk, The Hydrogen Bond and Fast Proton Exchange (Naukova Dumka, Kiev, 1978) (in Russian)Google Scholar
  29. [29]
    R.P. Bell, Proton in Chemistry (Chapman and Holly, London, 1959)Google Scholar
  30. [30]
    D. Grasso, J.C. Carrington, P. Chheda, B. Kim, Water Res. 29, 49 (1995)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Vladimir M. Gun’ko
    • 1
    Email author
  • Waldemar Tomaszewski
    • 2
  • Tetyana V. Krupska
    • 3
  • Konstantin V. Turov
    • 4
  • Roman Leboda
    • 5
  • Vladimir V. Turov
    • 3
  1. 1.Department of Amorphous and Structurally Ordered OxidesChuiko Institute of Surface ChemistryKievUkraine
  2. 2.Department of ChemistryWarsaw University of TechnologyWarsawPoland
  3. 3.Department of Biomedical Problems of SurfaceChuiko Institute of Surface ChemistryKievUkraine
  4. 4.Department of Bioactive Heterocyclic Basic CompoundsInstitute of Bioorganic Chemistry and PetrochemistryKievUkraine
  5. 5.Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations