Central European Journal of Chemistry

, Volume 11, Issue 5, pp 782–789 | Cite as

Effect of hydrothermal treatment on the structure of an aluminosilicate polymer

  • Jaroslav Melar
  • Vratislav BednarikEmail author
  • Roman Slavik
  • Miroslav Pastorek
Research Article


The effect of hydrothermal treatment on the structure of an aluminosilicate polymer prepared by a polycondensation reaction between silicate and hydroxoaluminate in alkaline aqueous solution was studied. The structural changes were investigated using X-ray diffraction analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy imaging and thermogravimetric analysis. The results indicated that the amorphous aluminosilicate polymer transformed into a crystalline product during the hydrothermal treatment at 145°C. The crystalline phase was identified as a mineral of the zeolite group, most likely phillipsite. This transformation required an alkaline environment during the hydrothermal treatment.


Aluminosilicate polymer Zeolite Hydrothermal treatment Polycondensation Geopolymerization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Kosova, Chemicke listy 99(6), 411 (2005) (in Czech with English summary)Google Scholar
  2. [2]
    P. Payra, P.K. Dutta, In: S.M. Auerbach, K.A. Carrado, P.K. Dutta (Eds.), Zeolites: A primer. Handbook of Zeolite Science and Technology (Marcel Dekker, New York, 2003)Google Scholar
  3. [3]
    H. Grabherr, J. Anim. Physiol. Anim. Nutr. 93(2), 221 (2009)CrossRefGoogle Scholar
  4. [4]
    J. Davidovits, J. Therm. Anal. 37(8), 1633 (1991)CrossRefGoogle Scholar
  5. [5]
    B. Majidi, Materials Technology 24(2), 79 (2009)Google Scholar
  6. [6]
    H. Xu, J.S.J. Van Deventer, Int. J. Miner. Process. 59(3), 247 (2000)CrossRefGoogle Scholar
  7. [7]
    H. Wang, H. Li, F. Yan, Colloids and Surfaces A-Physicochemical and Engineering Aspects 268(1–3), 1 (2005)Google Scholar
  8. [8]
    Y. Zhang, W. Sun, Z. Li, Colloids and Surfaces A-Physicochemical and Engineering Aspects 302(1–3), 473 (2007)Google Scholar
  9. [9]
    S. Andini, R. Cioffi, F. Colangelo, T. Grieco, F. Montagnaro, L. Santoro, Waste Management 28(2), 416 (2008)CrossRefGoogle Scholar
  10. [10]
    R. Slavik, V. Bednarik, M. Vondruska, A. Nemec, J. Mater. Process. Technol. 200(1–3), 265 (2008)CrossRefGoogle Scholar
  11. [11]
    W. Mozgawa, J. Deja, J. Molec. Struct. 924-26(SI), 434 (2009)CrossRefGoogle Scholar
  12. [12]
    T. Hanzlicek, M. Steinerova, P. Straka, I. Perna, P. Siegl, T. Svarcova, Mater. Design 30(8), 3229 (2009)CrossRefGoogle Scholar
  13. [13]
    D.C. Comrie, J.H. Paterson, D.J. Ritcey, 3rd International Conf. on New Frontiers for Hazardous Waste Management, Pittsburgh, September 10–13, 1989 (Proceedings, 161–165, 1989)Google Scholar
  14. [14]
    D.S. Perera, M.G. Blackford, E.R. Vance, J.V. Hanna, K.S. Finnie, C.L. Nicholson, 28th Symposium on the Scientific Basis for Nuclear Waste Management, MRS Spring Meeting, San Francisco. April 13–16, 2004 (Proceedings, 2004)Google Scholar
  15. [15]
    K. Ikeda, Developments in Porous, Biological and Geopolymer Ceramics: Ceramic Engineering and Science Proceedings 28(9), 293 (2008)Google Scholar
  16. [16]
    T. Lin, D. Jia, M. Wang, P. He, D. Liang, Global NEST Journal 32(1), 77 (2009)Google Scholar
  17. [17]
    H.W. Nugteren, V.C.L. Butselaar-Orthlieb, M. Izquierdo, Bulletin of Materials Science 11(2), 155 (2009)Google Scholar
  18. [18]
    P. De Silva, K. Sagoe-Crenstil, Cement and Concrete Research 38(6), 870 (2008)CrossRefGoogle Scholar
  19. [19]
    P.S. Singh, Materials Science and Engineering A — Structural Materials Properties Microstructure And Processing 396(1–2), 392 (2005)CrossRefGoogle Scholar
  20. [20]
    P.V. Krivenko, G.Y. Kovalchuk, J. Mater. Sci. 42(9), 2944 (2007)CrossRefGoogle Scholar
  21. [21]
    D. Kolousek, J. Brus, M. Urbanova, J. Andertova, V. Hulinsky, J. Vorel, J. Mater. Sci. 42(22), 9267 (2007)CrossRefGoogle Scholar
  22. [22]
    B. Zhang, K.J.D. Mackenzie, I.W.M. Brown, J. Mater. Sci. 44(17), 4668 (2009)CrossRefGoogle Scholar
  23. [23]
    C. Villa, E.T. Pecina, R. Torres, L. Gomez, Construction and Building Materials 24(11), 2084 (2010)CrossRefGoogle Scholar
  24. [24]
    V. Bednarik, M. Vondruska, R. Slavik, J. Melar, Inorganic Reaction Mechanisms 6(4), 327 (2008)Google Scholar
  25. [25]
    F.A. Miller, C.H. Wilkins, Anal. Chem. 24(8), 1253 (1952)CrossRefGoogle Scholar
  26. [26]
    G. Socrates, Infrared characteristic group frequencies tables and charts, 2nd edition (John Wiley & Sons, Chichester, 1998) 206–225Google Scholar
  27. [27]
    E. Garand, T. Wende, D.J. Goebbert, R. Bergmann, G. Meijer, D.M. Neumark, K.R. Asmis, J. Amer. Chem. Soc. 132(2), 849 (2010)CrossRefGoogle Scholar
  28. [28]
    C.A. Rios, C.D. Williams, Fuel 87(12), 2482 (2008)CrossRefGoogle Scholar
  29. [29]
    J. Davidovits, Geopolymer Chemistry & Applications (Institut Geopolymere, Saint-Quentin, France, 2008) 61–75Google Scholar
  30. [30]
    M. Criado, A. Fernandez-Jimenez, A.G. De La Torre, M.A.G. Aranda, A. Alomo, Cement and Concrete Research 37(5), 671 (2007)CrossRefGoogle Scholar
  31. [31]
    R.A. Sheppard, J.J. Fitzpatrick, Clays and Clay Minerals 32(3), 243 (1989)CrossRefGoogle Scholar
  32. [32]
    J.E. Garcia, M.M. Gonzalez, J.S. Notario, J.M. Caceres, Reactive Polymers 19(3), 225 (1993)CrossRefGoogle Scholar
  33. [33]
    L.P. van Reeuwijk, Landbouwhogesch Wageningen 74(9), 1 (1974)Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Jaroslav Melar
    • 1
  • Vratislav Bednarik
    • 1
    Email author
  • Roman Slavik
    • 1
  • Miroslav Pastorek
    • 2
  1. 1.Department of Environment Protection Engineering, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Department of Polymer Engineering, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations