Central European Journal of Chemistry

, Volume 11, Issue 1, pp 25–34 | Cite as

Fully automated chip-based nanoelectrospray combined with electron transfer dissociation for high throughput top-down proteomics

  • Corina Flangea
  • Catalin Schiopu
  • Florina Capitan
  • Cristina Mosoarca
  • Marilena Manea
  • Eugen Sisu
  • Alina D. ZamfirEmail author
Research Article


The conventional protocol for protein identification by electrospray ionization mass spectrometry (MS) is based on enzymatic digestion which renders peptides to be analyzed by liquid chromatography-MS and collision-induced dissociation (CID) multistage MS, in the so-called bottom-up approach. Though this method has brought a significant progress to the field, many limitations, among which, the low throughput and impossibility to characterize in detail posttranslational modifications in terms of site(s) and structure, were reported. Therefore, the research is presently focused on the development of procedures for efficient top-down fragmentation of intact protein ions. In this context, we developed here an approach combining fully automated chip-based-nanoelectrospray ionisation (nanoESI), performed on a NanoMate robot, with electron transfer dissociation (ETD) for peptide and top-down protein sequencing and identification. This advanced analytical platform, integrating robotics, microfluidics technology, ETD and alternate ETD/CID, was tested and found ideally suitable for structural investigation of peptides and modified/functionalized peptides as well as for top-down analysis of medium size proteins by tandem MS experiments of significantly increased throughput and sensitivity. The obtained results indicate that NanoMate-ETD and ETD/CID may represent a viable alternative to the current MS strategies, with potential to develop into a method of routine use for high throughput top-down proteomics.


Chip-electrospray mass spectrometry Electron transfer dissociation Peptides Proteins Top-down analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Röwer, C. Koy, M. Hecker, T. Reimer, B. Gerber, H.J. Thiesen, M.O. Glocker, J. Am. Soc. Mass Spectrom. 22, 440 (2011)CrossRefGoogle Scholar
  2. [2]
    M.M. Savitski, F. Kjeldsen, M.L. Nielsen, R.A. Zubarev, J. Proteome Res. 6, 2669 (2007)CrossRefGoogle Scholar
  3. [3]
    A.A. Shvartsburg, A.J. Creese, R.D. Smith, H.J. Cooper, Anal. Chem. 83, 6918 (2011)CrossRefGoogle Scholar
  4. [4]
    A. Michalski, J. Cox, M. Mann, J. Proteome Res. 10, 1785 (2011)CrossRefGoogle Scholar
  5. [5]
    A.L. Capriotti, C. Cavaliere, P. Foglia, R. Samperi, A. Laganà, J. Chromatogr. A. 1218, 8760 (2011)CrossRefGoogle Scholar
  6. [6]
    H. Zhang, W. Cui, J. Wen, R.E. Blankenship, M.L. Gross, Anal. Chem. 83, 15598 (2011)Google Scholar
  7. [7]
    W. Cui, H.W. Rohrs, M.L. Gross, Analyst 136, 3854 (2011)CrossRefGoogle Scholar
  8. [8]
    F.H. Cederkvist, A.D. Zamfir, S. Bahrke, V.G.H. Eijsink, M. Sørlie, J. Peter-Katalinić, M.G. Peter, Angew. Chem. Int. Ed. Engl. 45, 2429 (2006)CrossRefGoogle Scholar
  9. [9]
    S. Yin, J.A. Loo, Int. J. Mass Spectrom. 300, 118 (2011)CrossRefGoogle Scholar
  10. [10]
    R.A. Zubarev, D.M. Horn, E.K. Fridriksson, N.L. Kelleher, N.A. Kruger, M.A. Lewis, B.K. Carpenter, F.W. McLafferty, Anal. Chem. 72, 563 (2000)CrossRefGoogle Scholar
  11. [11]
    K. Breuker, H. Oh, C. Lin, B.K. Carpenter, F.W. McLafferty, Proc. Natl. Acad. Sci. USA 101, 14011 (2004)CrossRefGoogle Scholar
  12. [12]
    K. Breuker, F.W. McLafferty, Angew. Chem. Int. Ed. Engl. 44, 4911 (2005)CrossRefGoogle Scholar
  13. [13]
    S. Wu, N. Tolić, Z. Tian, E.W. Robinson, L. Paša-Tolić, Methods Mol. Biol. 694, 291 (2011)CrossRefGoogle Scholar
  14. [14]
    D. Calligaris, C. Villard, D. Lafitte, J. Proteomics 74, 920 (2011)CrossRefGoogle Scholar
  15. [15]
    Z. Darula, R.J. Chalkley, A. Lynn, P.R. Baker, K.F. Medzihradszky, Amino Acids 41, 321 (2011)CrossRefGoogle Scholar
  16. [16]
    N.P. Sargaeva, C. Lin, P.B.J. O’Connor, J. Am. Soc. Mass Spectrom. 22, 480 (2011)CrossRefGoogle Scholar
  17. [17]
    H. Hahne, B. Kuster, J. Am. Soc. Mass Spectrom. 22, 931 (2011)CrossRefGoogle Scholar
  18. [18]
    J.P. Williams, J.M. Brown, I. Campuzano, P.J. Sadler, Chem. Commun. 46, 5458 (2010)CrossRefGoogle Scholar
  19. [19]
    S.R. Hart, Methods Mol. Biol. 658, 339 (2010)CrossRefGoogle Scholar
  20. [20]
    Y. Shen, N. Tolić, S.O. Purvine, R.D. Smith, J. Proteome Res. 11, 668 (2012)CrossRefGoogle Scholar
  21. [21]
    K. Gupta, M. Kumar, K. Chandrashekara, K.S. Krishnan, P. Balaram, J. Proteome Res. 11, 515 (2012)CrossRefGoogle Scholar
  22. [22]
    R. Almeida, C. Mosoarca, M. Chirita, V. Udrescu, N. Dinca, Z. Vukelić, M. Allen, A.D. Zamfir, Anal. Biochem. 378, 43 (2008)CrossRefGoogle Scholar
  23. [23]
    A. Serb, C. Schiopu, C. Flangea, E. Sisu, A.D. Zamfir, J. Mass Spectrom. 44, 1434 (2009)CrossRefGoogle Scholar
  24. [24]
    A. Serb, C. Schiopu, C. Flangea, Ž. Vukelić, E. Sisu, L. Zagrean, A.D. Zamfir, Eur. J. Mass Spectrom. 15, 541 (2009)CrossRefGoogle Scholar
  25. [25]
    C. Flangea, A.F. Serb, C. Schiopu, S. Tudor, E. Sisu, D.G. Seidler, A.D. Zamfir, Cent. Eur. J. Chem. 7, 752 (2009)CrossRefGoogle Scholar
  26. [26]
    C. Schiopu, C. Flangea, F. Capitan, A. Serb, Z. Vukelić, S. Kalanj-Bognar, E. Sisu, M. Przybylski, A.D. Zamfir, Anal. Bioanal. Chem. 395, 2465 (2009)CrossRefGoogle Scholar
  27. [27]
    L. Bindila, J. Peter-Katalinić, A.D. Zamfir, Electrophoresis 26, 1488 (2005)CrossRefGoogle Scholar
  28. [28]
    Z. Vukelić, S. Kalanj-Bognar, M. Froesch, L. Bîndila, B. Radić, M. Allen, J. Peter-Katalinić, A.D. Zamfir, Glycobiology 17, 504 (2007)CrossRefGoogle Scholar
  29. [29]
    A.D. Zamfir, N. Lion, Z. Vukelic, L. Bindila, J. Rossier, H.H. Girault, J. Peter-Katalinic, Lab. Chip 5, 298 (2005)CrossRefGoogle Scholar
  30. [30]
    I. Sisu, V. Udrescu, C. Flangea, S. Tudor, N. Dinca, L. Rusnac, A.D. Zamfir, E. Sisu, Cent. Eur. J. Chem. 7, 66 (2009)CrossRefGoogle Scholar
  31. [31]
    M. Szabó, M. Manea, E. Orbán, A. Csámpai, S. Bősze, R. Szabó, M. Tejeda, D. Gaál, B. Kapuvári, M. Przybylski, F. Hudecz, G. Mező, Bioconjug. Chem. 20, 656 (2009)CrossRefGoogle Scholar
  32. [32]
    P. Roepstorff, J. Fohlman, Biomed. Mass Spectrom. 11, 601 (1984)CrossRefGoogle Scholar
  33. [33]
    H.J. Sterling, E.R. Williams, Anal. Chem. 82, 9050 (2010)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Corina Flangea
    • 1
  • Catalin Schiopu
    • 1
  • Florina Capitan
    • 1
  • Cristina Mosoarca
    • 2
    • 3
  • Marilena Manea
    • 4
  • Eugen Sisu
    • 5
  • Alina D. Zamfir
    • 1
    Email author
  1. 1.Department of Chemical and Biological Sciences“Aurel Vlaicu” University of AradAradRomania
  2. 2.Mass Spectrometry LaboratoryNational Institute for Research and Development in Electrochemistry and Condensed MatterTimisoaraRomania
  3. 3.Physics DepartmentWest University of TimisoaraTimisoaraRomania
  4. 4.Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, ZukunftskollegUniversity of KonstanzKonstanzGermany
  5. 5.Chemistry Institute of Romanian AcademyTimisoaraRomania

Personalised recommendations