Advertisement

Central European Journal of Chemistry

, Volume 10, Issue 5, pp 1459–1463 | Cite as

Isocratic liquid chromatographic determination of three paraben preservatives in hygiene wipes using a reversed phase core-shell narrow-bore column

  • Paraskevas D. TzanavarasEmail author
  • Theano D. Karakosta
  • Pantelis G. Rigas
  • Demetrius G. Themelis
  • Anastasia Zotou
Short Communication

Abstract

The first HPLC method for the separation of three paraben preservatives (methyl-, ethyl- and propyl parabens) using a core-shell analytical column is reported in this study. The separation was completed in less than 8 min at a low flow rate of 0.4 mL min−1 and an isocratic mobile phase containing 20% acetonitrile as organic modifier. The backpressure was < 200 bar in all cases, enabling the usage of conventional HPLC equipment. The proposed analytical procedure was validated for linearity (0.5–20 µg L−1), limits of detection (15–43 µg L−1) and quantification (50–142 µg L−1), selectivity, within day (1.3–1.5%) and day-to-day (3.4–4.6%) precision and accuracy. The proposed method has been applied to the determination of the selected paraben preservatives in commercially available hygiene wipes. The mean percent recoveries were found to be in the range of 98.0–98.4%.

Keywords

High-performance liquid chromatography Core-shell (or fused core) column Parabens Hygiene wipes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Fekete, E. Olah, J. Fekete, J. Chromatogr. A 1228, 57 (2012)CrossRefGoogle Scholar
  2. [2]
    A. Cavazzini, F. Gritti, K. Kaczmarski, N. Marchetti, G. Guiochon, Anal. Chem. 79, 5972 (2007)CrossRefGoogle Scholar
  3. [3]
    F. Gritti, I. Leonardis, J. Abia, G. Guiochon, J. Chromatogr. A 1217, 3819 (2010)CrossRefGoogle Scholar
  4. [4]
    U.S. Food and Drug Administration (2009) [URL: http://www.fda.gov/Cosmetics/ProductandIngredientSafety/SelectedCosmeticIngredients/ucm128042.htm] (accessed January 2012)
  5. [5]
    P.D. Darbre, A. Aljarrah, W.R. Miller, N.G. Coldham, M.J. Sauer, G.S. Pope, J. Appl. Toxicol. 24, 5 (2004)CrossRefGoogle Scholar
  6. [6]
    F.A. Andersen, Int. J. Toxicol. 27(SUPPL 4), 1 (2008)Google Scholar
  7. [7]
    J.F. Howlett, Food Add. Contam. 9, 607 (1992)CrossRefGoogle Scholar
  8. [8]
    G.A. Shabir, Indian J. Pharm. Sci. 72, 421 (2010)CrossRefGoogle Scholar
  9. [9]
    A. Zotou, I. Sakla, P.D. Tzanavaras, J. Pharm. Biomed. Anal. 53, 785 (2010)CrossRefGoogle Scholar
  10. [10]
    M.M. Mincea, I.R. Lupşa, D.F. Cinghiţå, C.V. Radovan, I. Talpos, V. Ostafe, J. Serbian Chem. Soc. 74, 669 (2009)CrossRefGoogle Scholar
  11. [11]
    G. Shanmugam, B.R. Ramaswamy, V. Radhakrishnan, H. Tao, Microchem. J. 96, 391 (2010)CrossRefGoogle Scholar
  12. [12]
    J. Šafra, M. Pospíšilová, J. Pharm. Biomed. Anal. 48, 452 (2008)CrossRefGoogle Scholar
  13. [13]
    Y. Yang, C.C. Hodges, LC-GC North Amer. 23, 31 (2005)Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Paraskevas D. Tzanavaras
    • 1
    Email author
  • Theano D. Karakosta
    • 1
  • Pantelis G. Rigas
    • 2
  • Demetrius G. Themelis
    • 1
  • Anastasia Zotou
    • 1
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryAristotelian University of ThessalonikiThessalonikiGreece
  2. 2.Department of Fisheries and Aquaculture TechnologyAlexander Technological Educational Institute of ThessalonikiN. MoudaniaGreece

Personalised recommendations