Central European Journal of Chemistry

, Volume 10, Issue 4, pp 1236–1244 | Cite as

Temperature effects on the adsorption of polyvinyl alcohol on silica

Research Article
  • 109 Downloads

Abstract

The influence of temperature on the adsorption of polyvinyl alcohol (PVA) on a silica surface was studied from 15–35°C. The structure of the polymer adsorption layer was determined from spectrophotometric, viscosity and thermogravimetric measurements. The amount of PVA adsorbed, macromolecules’ conformation in solution, thickness of the polymer adsorption layer, and changes in the heating curve of SiO2 with adsorbed polymer were determined. Temperature influences the PVA chain conformation in solution and the structure of the polymer adsorption layer. A temperature rise causes relaxation of polymer coils which results in an increase in the linear dimensions of PVA chains in the solution, the creation of a thicker adsorption layer, and an increase in polymer adsorbed. Polymer adsorption on the silica surface also causes changes in the heating curve of these systems. The mass losses due to heating are smallest for the systems obtained at 15°C because the least polymer is adsorbed at this temperature.

Keywords

Polyvinyl alcohol Silica Polymer adsorption layer structure Thermogravimetry Temperature influence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Chaiwong, A. Nuntiya, Chiang Mai J. Sci. 35, 11 (2008)Google Scholar
  2. [2]
    T. Nasim, A. Bandyopadhyay, Sep. Purific. Tech. 88, 87 (2012)CrossRefGoogle Scholar
  3. [3]
    H. Moayedi, A. Asadi, B.B.K. Huat, F. Moayedi, S. Kazemian, Int. J. Electrochem. Sci. 6 2526 (2011)Google Scholar
  4. [4]
    R.E. Levänen, Adv. Sci. Tech, 45, 38 (2006)CrossRefGoogle Scholar
  5. [5]
    Y. Adachi, A. Kobayashi, M. Kobayashi, Int. J. Polym. Sci. doi:10.1155/2012/574878 (2012)Google Scholar
  6. [6]
    E. Ringenbach, G. Chauvetau, E. Pefferkorn, Colloids Surf. 99, 161 (1995)CrossRefGoogle Scholar
  7. [7]
    A. Pettersson, G. Marino, A. Pursiheimo, J.B. Rosenholm, J. Colloid Interf. Sci. 228, 73 (2000)CrossRefGoogle Scholar
  8. [8]
    Y.K. Leong, Colloids Surf. 118, 107 (1996)CrossRefGoogle Scholar
  9. [9]
    K.K. Das, P. Somasundaran, J. Colloid Interf. Sci. 271, 102 (2004)CrossRefGoogle Scholar
  10. [10]
    J. Zhang, C. Huguenard, C. Scarnecchia, R. Menghetti, J. Buffle, Colloids Surf. 151, 49 (1999)CrossRefGoogle Scholar
  11. [11]
    S. Chibowski, J. Colloid Interf. Sci. 140, 444 (1990)CrossRefGoogle Scholar
  12. [12]
    K. Vermöhlen, H. Lewandowski, H.D. Narres, M.J. Schwuger, Colloids Surf. 163, 45 (2000)CrossRefGoogle Scholar
  13. [13]
    R. Steitz, V. Leiner, R. Siebrecht, R. Klitzing, Colloids Surf. 163, 63 (2000)CrossRefGoogle Scholar
  14. [14]
    M. Wiśniewska, S. Chibowski, Ads. Sci. Tech. 23, 655 (2005)CrossRefGoogle Scholar
  15. [15]
    E. Grządka, Cellulose 28, 291 (2011)CrossRefGoogle Scholar
  16. [16]
    E. Grządka, Mat. Chem. Phys. 126, 488 (2011)CrossRefGoogle Scholar
  17. [17]
    E. Grządka, S. Chibowski, Cellulose 19, 23 (2012)CrossRefGoogle Scholar
  18. [18]
    S. Kim, J.H. Sung, K.H. Ahn, S.J. Lee, Langmuir 25, 6155 (2009)CrossRefGoogle Scholar
  19. [19]
    L.C. Guo, Y. Zhang, N. Uchida, K. Uematsu, J. Europen Ceram. Soc. 17, 345 (1997)CrossRefGoogle Scholar
  20. [20]
    P. Mpofu, J. Addai-Mensah, J. Ralston, J. Colloid Interf. Sci. 271, 145 (2004)CrossRefGoogle Scholar
  21. [21]
    C. Pagnoux, M. Serantoni, R. Laucournet, T. Chartier, J.F. Baumard, J. Europen Ceram. Soc. 19, 1935 (1999)CrossRefGoogle Scholar
  22. [22]
    M. Wiśniewska, J. Am. Ceram. Soc. 90, 3608 (2007)CrossRefGoogle Scholar
  23. [23]
    M. Wiśniewska, Ads. Sci. Technol. 26, 103 (2008)CrossRefGoogle Scholar
  24. [24]
    M. Wiśniewska, S. Chibowski, T. Urban, J. Colloid Interf. Sci. 334, 146 (2009)CrossRefGoogle Scholar
  25. [25]
    S.K. Parida, S. Dash, S. Patel, B.K. Mishra, Adv. Colloid Interf. Sci. 121, 77 (2006)CrossRefGoogle Scholar
  26. [26]
    S. Porejko, J. Fejgin, L. Zakrzewski, Chemia związków wielkocząsteczkowych (WNT, Warszawa, 1974) p.161 (In Polish)Google Scholar
  27. [27]
    M.M. Zwick, J. Appl. Polym. Sci. 9, 2393 (1965)CrossRefGoogle Scholar
  28. [28]
    V.I. Maslov, F.M. Kolerko, Lab. Delo. 5, 295 (1972)Google Scholar
  29. [29]
    A. M’Pandou, B. Siffert, Colloids Surf. 24, 159 (1987)CrossRefGoogle Scholar
  30. [30]
    M.J. Garvey, T.F. Tadros, B. Vincent, J. Colloid Interf. Sci. 49, 57 (1974)CrossRefGoogle Scholar
  31. [31]
    F. Paulik, Special trends in thermal analysis (John Wiley and Sons, New York, 1995)Google Scholar
  32. [32]
    S. Chibowski, Powder Tech. 63, 75 (1990)CrossRefGoogle Scholar
  33. [33]
    D.N. Misra, J. Colloid Interf. Sci. 181, 289 (1996)CrossRefGoogle Scholar
  34. [34]
    K.K. Das, P. Somasundaran, Colloids Surf. 223, 17 (2003)CrossRefGoogle Scholar
  35. [35]
    H. Liu, H. Xiao, Mat. Let. 62, 870 (2008)CrossRefGoogle Scholar
  36. [36]
    M. Wiśniewska, Mat. Let. 64, 1611 (2010)CrossRefGoogle Scholar
  37. [37]
    V. Shubin, J. Colloid Interf. Sci. 191, 372 (1997)CrossRefGoogle Scholar
  38. [38]
    M. Wiśniewska, Colloid Polym. Sci. 289, 341 (2011)CrossRefGoogle Scholar
  39. [39]
    S.K. Parida, S. Dash, S. Patel, B.K. Mishra, Adv. Colloid Interf. Sci. 121, 77 (2006)CrossRefGoogle Scholar
  40. [40]
    Z. Peng, L.X. Kong, Polym. Degr. Stab. 92, 1061 (2007)CrossRefGoogle Scholar
  41. [41]
    K. Nakane, T. Yamashita, K. Iwakura, F. Suzuki, J. App. Polym. Sci. 74, 133 (1999)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of Radiochemistry and Colloids Chemistry, Faculty of ChemistryMaria Curie Sklodowska UniversityLublinPoland

Personalised recommendations