Central European Journal of Chemistry

, Volume 9, Issue 3, pp 391–403 | Cite as

Aqueous phenol and ethylene glycol solutions in electrohydrodynamic liquid bridging

  • Mathias Eisenhut
  • Xinghua Guo
  • Astrid H. Paulitsch-Fuchs
  • Elmar C. Fuchs
Invited Paper
  • 72 Downloads

Abstract

The formation of aqueous bridges containing phenol and ethylene glycol as well as bisphenol-A, hydrochinone and p-cresol under the application of high voltage DC (“liquid bridges”) is reported. Detailed studies were made for phenol and glycol with concentrations from 0.005 to 0.531 mol L−1. Conductivity as well as substance and mass transfers through these aqueous bridges are discussed and compared with pure water bridges. Previously suggested bidirectional mass transport is confirmed for the substances tested. Anodic oxidation happens more efficiently when phenol or glycol are transported from the cathode to the anode since in this case the formation of a passivation layer or electrode poisoning are retarded by the electrohydrodynamic (EHD) flow. The conductivity in the cathode beaker decreases in all experiments due to electrophoretic transport of naturally dissolved carbonate and bicarbonate to the anode. The observed electrochemical behavior is shortly discussed and compared to known mechanisms.

Keywords

Floating water bridge Electrohydrodynamics Phenol oxidation Glycol oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.G. Armstrong, The Electrical Engineer 10, 154 (1893)Google Scholar
  2. [2]
    E.C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler, H. Eisenkölbl, J. Phys. D: Appl. Phys. 40, 6112 (2007)CrossRefGoogle Scholar
  3. [3]
    E.C. Fuchs, K. Gatterer, G. Holler, J. Woisetschläger, J. Phys. D: Appl. Phys. 41, 185502 (2008)CrossRefGoogle Scholar
  4. [4]
    E.C. Fuchs, B. Bitschnau, J. Woisetschläger, E. Maier, B. Beuneu, J. Teixeira, J. Phys. D: Appl. Phys. 42, 065502 (2009)CrossRefGoogle Scholar
  5. [5]
    E.C. Fuchs, P. Baroni, B. Bitschnau, L. Noirez, J. Phys. D: Appl. Phys. 43, 105502 (2010)CrossRefGoogle Scholar
  6. [6]
    J. Woisetschläger, K. Gatterer, E.C. Fuchs, Exp. Fluids 48, 121 (2010)CrossRefGoogle Scholar
  7. [7]
    H. Nishiumi, F. Honda, Res. Let. Phys. Chem. (2009) art. ID 371650Google Scholar
  8. [8]
    M. Tello, R. Garcia, J.A. Martín-Gago, N.F. Martínez, M.S. Martín-González, L. Aballe, A. Baranov, L. Gegoratti, Advanced Materials 17, 1480 (2005)CrossRefGoogle Scholar
  9. [9]
    T. Cramer, F. Zerbetto, R. Garcia, Langmuir 24, 6116 (2008)CrossRefGoogle Scholar
  10. [10]
    A. Widom, J. Swain, J. Silverberg, S. Sivasubramanian, Y.N. Srivastava, Phys. Rev. E 80, 016301 (2009)CrossRefGoogle Scholar
  11. [11]
    A. Castellanos, Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No.380 (Springer, Wien, New York, 1998) ISBN 3-211-83137-1Google Scholar
  12. [12]
    J. Mrázek, J. V. Burda, J. Chem. Phys. 125, 194518 (2006)CrossRefGoogle Scholar
  13. [13]
    W.L. Jorgensen, J. Tirado-Rives, PNAS Proc. Natl. Acad. Sci. 102, 6685 (2005)Google Scholar
  14. [14]
    E. Del Giudice, Journal of Physics: Conf. Ser. 67, 012006 (2006)CrossRefGoogle Scholar
  15. [15]
    T. Head-Gordon, M.E. Johnson, PNAS Proc. Natl. Acad. Sci. 21, 7973 (2006)CrossRefGoogle Scholar
  16. [16]
    H.E. Stanley, S.V. Buldyrev, G. Franzese, N. Giovambattista, F.W. Starr, Phil. Trans. R. Soc. A 363, 509 (2005)CrossRefGoogle Scholar
  17. [17]
    C.A. Chatzidimitriou-Dreismann, T.A. Redah, R.M.F. Streffer, J. Mayers, Phys. Rev. Lett. 79, 2839 (1997)CrossRefGoogle Scholar
  18. [18]
    R. Arani, I. Bono, E. Del Giudice, G. Preparata, International Journal of Modern Physics B 9, 1813 (1995)CrossRefGoogle Scholar
  19. [19]
    E. Del Giudice, E.C. Fuchs, G. Vitiello, Water (Seattle) 2, 69 (2010) ISSN 2155-8434Google Scholar
  20. [20]
    R.C. Ponterio, M. Pochylski, F. Aliotta, C. Vasi, M.E. Fontanella, F. Saija, J. Phys. D: Appl. Phys. 43, 175405 (2010)CrossRefGoogle Scholar
  21. [21]
    E.C. Fuchs, MDPI Water 2, 381 (2010)CrossRefGoogle Scholar
  22. [22]
    E.C. Fuchs, L.L.F. Agostinho, A. Wexler, R.M. Wagterveld, J. Tuinstra, J. Woisetschläger, J. Phys. D: Appl. Phys. 44 025501 (2011)CrossRefGoogle Scholar
  23. [23]
    G.H. Pollack, Cells, gels and the engine of life (Ebener & Sons, Seattle WA, 2001) ISBN 0-9626895-2-1Google Scholar
  24. [24]
    K. Ovchinnikova, G.H. Pollack, Langmuir 25(1), 542 (2009)CrossRefGoogle Scholar
  25. [25]
    H. R. Corti, Langmuir 25(11), 6587 (2009)CrossRefGoogle Scholar
  26. [26]
    K. Ovchinnikova, G.H. Pollack, Langmuir 25(18), 11202 (2009)CrossRefGoogle Scholar
  27. [27]
    H.R. Corti, Langmuir 25(18), 11203 (2009)CrossRefGoogle Scholar
  28. [28]
    E.C. Fuchs, L.L.F. Agostinho, M. Eisenhut, J. Woisetschläger, Proc. SPIE 7376, 73761E1 (2010) DOI:10.1117/12.868994Google Scholar
  29. [29]
    F. Saija, F. Aliotta, M.E. Fontanella, M. Pochylski, G. Salvato, C. Vasi, R.C. Ponterio, J. Chem. Phys. 133, 081104 (2010)CrossRefGoogle Scholar
  30. [30]
    A.G. Marin, D. Lohse, Phys. Fluids 22, 122104 (2010)CrossRefGoogle Scholar
  31. [31]
    A.A. Aerov, Why the Water Bridge does not collapse, arXiv:1012.1592v1 (2010)Google Scholar
  32. [32]
    M. Gattrell, D.W. Kirk, J. Electrochem. Soc. 140(6), 1534 (1993)CrossRefGoogle Scholar
  33. [33]
    B. Fleszar, J. Ploszynska, Electrochimia Acta 30(1), 31 (1985)CrossRefGoogle Scholar
  34. [34]
    D. Fino, C. Carlesi Jara, G. Saracco, V. Specchia, P. Spinelli, J, Appl, Electrochem. 35, 405 (2005)CrossRefGoogle Scholar
  35. [35]
    Ch. Comminellis, C. Pulgrain, J. Appl. Electrochem. 21, 703 (1991)CrossRefGoogle Scholar
  36. [36]
    S. Andreescu, D. Andreescu, O.A. Sadik, Electrochem. Comm. 5, 681 (2003)CrossRefGoogle Scholar
  37. [37]
    R.C. Kolle, D.C. Johnson, Anal. Chem, 51(6), 741 (1979)CrossRefGoogle Scholar
  38. [38]
    R. Menini, Y.M. Henuset, J. Fournier, J. Appl. Electrochem. 35, 625 (2005)CrossRefGoogle Scholar
  39. [39]
    X.-Y. Li, Y.-H. Cui, Y.-J. Feng, Z.-M. Xie, J.-D. Gu, Water Res. 39, 1972 (2005)CrossRefGoogle Scholar
  40. [40]
    P. Canizares, J.A. Domínguez, M.A. Rodrigo, J. Villaseñor, J. Rodríguez, Ind. Eng. Chem. Res. 38(10), 3779 (1999)CrossRefGoogle Scholar
  41. [41]
    R.B. de Lima, V. Paganin, T. Iwasita, W. Vielstich, Electrochimica Acta 49, 85 (2003)CrossRefGoogle Scholar
  42. [42]
    K. Matsuoka, Electrochimica Acta 51, 1085 (2005)CrossRefGoogle Scholar
  43. [43]
    A. Kelaidopoulou, E. Abelidou, A. Papoutsis, E.K. Polychroniadis, G. Kokkinidis, J. Appl. Electrochem. 28, 1101 (1998)CrossRefGoogle Scholar
  44. [44]
    P.A. Christensen, A. Hamnett, J. Electroanal. Chem. 260, 341 (1989)CrossRefGoogle Scholar
  45. [45]
    F. Hahn, B. Beden, F. Kadirgan, Electrochimica Acta. 23, 299 (1978)CrossRefGoogle Scholar
  46. [46]
    R. Parsons, T. VanderNoot, J. Electroanal. Chem. 257, 9 (1988)CrossRefGoogle Scholar
  47. [47]
    J. Kendall, J. Am. Chem. Soc. 38, 1480 (1916)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Mathias Eisenhut
    • 1
    • 2
  • Xinghua Guo
    • 2
  • Astrid H. Paulitsch-Fuchs
    • 1
  • Elmar C. Fuchs
    • 1
  1. 1.Wetsus — Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  2. 2.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations