Central European Journal of Chemistry

, Volume 9, Issue 3, pp 415–421 | Cite as

Nax−yHyTi2−xFexO4·nH2O nanosheets with lepidocrocite-like layered structure synthesized by hydrothermal treatment of ilmenite sand

  • Paula M. Jardim
  • Lidija Mancic
  • Bojan A. Marinkovic
  • Olivera Milosevic
  • Fernando Rizzo
Research Article
  • 99 Downloads

Abstract

Nax−yHyTi2−xFexO4·nH2O nanosheets with lepidocrocite-like layered structure were produced through alkaline hydrothermal treatment at very low temperatures (130°C) from ilmenite sand. The crystal structure, morphology and optical properties were investigated by X-Ray diffraction, transmission electron microscopy, selected area electron diffraction, energy dispersive spectroscopy and UV-Vis spectroscopy. The product shows leaf-like nanosheet morphology with thickness <30 nm and lengths <1 µm. Three lepidocrocite-like titanates (Imm2 space group) with similar a and c lattice parameters but different interlayer distances (b/2) were identified. This appears to be the first preparation of lepidocrocite-like layered nanosheets by a simple, energy efficient (low temperature) and low cost (starting from mineral sand) procedure.

Keywords

Ilmenite Hydrothermal synthesis Lepidocrocite-like layered structure X-ray diffraction Transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Sasaki, M. Watanabe, Y. Michiue, Y. Komatsu, F. Izumi, S. Takanouchi, Chem. Mater. 7, 1001 (1995)CrossRefGoogle Scholar
  2. [2]
    T. Sasaki, F. Kooli, M. Iida, Y. Machiue, Chem. Mater. 10, 4123 (1998)CrossRefGoogle Scholar
  3. [3]
    M. Hanada, T. Sasaki, Y. Ebina, M. Watanabe, Journal of Photochemistry and Photobiology A: Chemistry 148, 273 (2002)CrossRefGoogle Scholar
  4. [4]
    A.F. Reid, W.G. Mumme, A.D. Wadsley, Acta Cryst. B24, 1228 (1968)Google Scholar
  5. [5]
    T. Gao, H. Fjellvag, P. Norby, Chem. Mater. 21, 3503 (2009)CrossRefGoogle Scholar
  6. [6]
    T. Gao, H. Fjellvag, P. Norby, J. Mater. Chem. 19, 787 (2009)Google Scholar
  7. [7]
    T. Gao, P. Norby, H. Okamoto, H. Fjellvag, Inorg. Chem. 48, 9409 (2009)CrossRefGoogle Scholar
  8. [8]
    T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, Nakazawa, J. Am. Chem. Soc. 118, 8329 (1996)CrossRefGoogle Scholar
  9. [9]
    M. Osada, T. Sasaki, J. Mater. Chem. 19, 2503 (2009)CrossRefGoogle Scholar
  10. [10]
    N. Sakai, K. Fukuda, T. Shibata, Y. Ebina, K. Takada, T. Sasaki, J. Phys. Chem. B 110, 6198 (2006)CrossRefGoogle Scholar
  11. [11]
    T. Shibata, N. Sakai, K. Fukuda, Y. Ebina, K. Takada, T. Sasaki, Phys. Chem. Chem. Phys. 9, 2413 (2007)CrossRefGoogle Scholar
  12. [12]
    N. Sakai, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 126, 5851 (2004)CrossRefGoogle Scholar
  13. [13]
    T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, Chem. Mater. 19, 6575 (2007)CrossRefGoogle Scholar
  14. [14]
    T.C. Ozawa, K. Fukuda, K. Akatsuka, Y. Ebina, T. Sasaki, K. Kurashima, K. Kosuda, J. Phys. Chem. C 112, 1312 (2008)CrossRefGoogle Scholar
  15. [15]
    S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu, Y. Matsumoto, J. Am. Chem. Soc. 42, 4092 (2003)Google Scholar
  16. [16]
    M. Osada, Y. Ebina, K. Takada, T. Sasaki, Adv. Mater. 18, 295 (2006)CrossRefGoogle Scholar
  17. [17]
    M. Osada, Y. Ebina, K. Fukuda, K. Ono, K. Takada, K. Yamaura, E. Takayama-Muromachi, T. Sasaki, Phys. Rev. B 73, 153301 (2006)CrossRefGoogle Scholar
  18. [18]
    M. Osada, M. Itose, Y. Ebina, K. Ono, S. Ueda, K. Kobayashi, T. Sasaki, Appl. Phys. Lett. 92, 253110 (2008)CrossRefGoogle Scholar
  19. [19]
    Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, J. Am. Chem. Soc. 128, 4872 (2006)CrossRefGoogle Scholar
  20. [20]
    T. Sasaki, Y. Ebina, Y. Kitami, M. Watanabe, J. Phys. Chem. B 105, 6116 (2001)CrossRefGoogle Scholar
  21. [21]
    D.V. Bavykin, V.N. Parmon, A.A. Lapkina, F.C. Walshc, J. Mater. Chem. 14, 3370 (2004)CrossRefGoogle Scholar
  22. [22]
    X. Wu, G. Steinle-Neumann, O. Narygina, I. Kantor, C. McCammon, S. Pascarelli, G. Aquilanti, V. Prakapenka, L. Dubrovinsky, Phys. Rev. B 79, 094106 (2009)CrossRefGoogle Scholar
  23. [23]
    E. Morgado Jr., M.A.S. de Abreu, O.R.C. Pravia, B.A. Marinkovic, P.M. Jardim, F.C. Rizzo, A.S. Araújo, Solid State Sciences 8, 888 (2006)CrossRefGoogle Scholar
  24. [24]
    E. Morgado, Jr., M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A.S. Araujo, Chem. Mater. 19, 665 (2007)CrossRefGoogle Scholar
  25. [25]
    B.A. Marinkovic, L. Mancic, P.M. Jardim, O. Milosevic, F. Rizzo, Solid State Commun. 145, 346 (2008)CrossRefGoogle Scholar
  26. [26]
    T. Sasaki, M. Waranabe, J. Phys. Chem. B, 101, 10159 (1997)CrossRefGoogle Scholar
  27. [27]
    B. Gilbert, C. Frandsen, E.R. Maxey, D.M. Sherman, Phys. Rev. 79, 035108 (2009)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Paula M. Jardim
    • 1
  • Lidija Mancic
    • 2
  • Bojan A. Marinkovic
    • 1
  • Olivera Milosevic
    • 2
  • Fernando Rizzo
    • 1
  1. 1.Departamento de Engenharia de MateriaisPontifícia Universidade Católica do Rio de Janeiro, GáveaRio de JaneiroBrazil
  2. 2.Institute of Technical Sciences of Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations