Central European Journal of Chemistry

, Volume 8, Issue 4, pp 789–796 | Cite as

New N-aryloxy-phthalimide derivatives. Synthesis, physico-chemical properties, and QSPR studies

  • Madalina Tudose
  • Florin D. Badea
  • Miron T. Caproiu
  • Adrian Beteringhe
  • Maria Maganu
  • Petre Ionita
  • Titus Constantinescu
  • Alexandru T. Balaban
Research Article
  • 127 Downloads

Abstract

Starting from N-hydroxyphthalimide 1 and the reactive fluoro- or chloro-nitroaryl derivatives 2, 3 and 4a-e (2-chloro-3,5-dinitropyridine; 3, NBD-chloride; 4a, 1-fluoro-2,4-dinitrobenzene; 4b, picryl chloride; 4c, 4-chloro-3,5-dinitrobenzotrifluoride; 4d, 2-chloro-3,5- dinitrobenzotrifluoride; 4e, 4-chloro-3,5-dinitrobenzoic acid) the corresponding N-(2-nitroaryloxy)-phthalimide derivatives 5a-e, or 6 and 7 were obtained and characterized by IR, UV-Vis 1H-NMR and 13C-NMR spectroscopy. The TLC behavior and the hydrophobicity of these derivatives have been experimentally evaluated by RM0 parameters (using RP-TLC). The experimental RM0 parameters were compared with the calculated partition coefficient, log P. A QSPR study was also performed to establish possible correlations between the structure and physical properties (λmax and RM0) of compounds 5a-e, 6, and 7.

Keywords

N-aryloxy-phthalimide derivatives UV-Vis TLC RP-TLC QSPR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Karakurt, S. Dalkara, M. Ozalp, S. Ozbey, E. Kendi, J. P. Stables, Eur. J. Med. Chem. 36, 421 (2001)CrossRefGoogle Scholar
  2. [2]
    L. Cohn, Liebigs Ann. Chem. 205, 295 (1880)CrossRefGoogle Scholar
  3. [3]
    A.L. Green, G.L. Sainpbury, B. Saville, M.J. Stansfield, J. Chem. Soc. 1583 (1958)Google Scholar
  4. [4]
    S. Coseri, Catal. Rev. 51, 218 (2009)CrossRefGoogle Scholar
  5. [5]
    S. Coseri, G.D. Mendenhall, K.U. Ingold, J. Org. Chem. 70, 4629 (2005)CrossRefGoogle Scholar
  6. [6]
    S. Coseri, Mini-Rev. Org. Chem. 5, 222 (2008)CrossRefGoogle Scholar
  7. [7]
    S. Coseri, Eur. J. Org. Chem. 1725 (2007)Google Scholar
  8. [8]
    Y. Ishii, T. Iwaham, S. Sakaguchi, K. Nakayama, M. Takeno, Y. Nishiyama, J. Org. Chem. 61, 4520 (1996)CrossRefGoogle Scholar
  9. [9]
    Y. Yoshino, Y. Hayashi, T. Iwahama, S. Sakaguchi, Y. Ishii, J. Org. Chem. 62, 6810 (1997)CrossRefGoogle Scholar
  10. [10]
    B.B. Wentzel, M.P.J. Donners, P.L. Alsters, M.C. Feiters, R.J.M. Nolte, Tetrahedron 56, 7797 (2000)CrossRefGoogle Scholar
  11. [11]
    T. Iwahama, Y. Yosshima, T. Keitoku, S. Sakaguchi, Y. Ishii, J. Org. Chem. 65, 6502 (2000)CrossRefGoogle Scholar
  12. [12]
    F. Minisci, C. Punta, F. Recupero, F. Fontana, G.F. Pedulli, Chem. Commun. 688 (2002)Google Scholar
  13. [13]
    A. Cecchetto, F. Minisci, F. Recupero, F. Fontana, G.F. Pedulli, Tetrahedron Lett. 43, 3605 (2002)CrossRefGoogle Scholar
  14. [14]
    F. Minisci, C. Punta, F. Recupero, F. Fontana, G.F. Pedulli, J. Org. Chem. 67, 2671 (2002)CrossRefGoogle Scholar
  15. [15]
    A. Rougny, M. Daudon, Bull. Soc. Chim. Fr. 5, 833 (1976)Google Scholar
  16. [16]
    L. Bauer, K.S. Suresh, J. Org. Chem. 28, 1604 (1963)CrossRefGoogle Scholar
  17. [17]
    H. Mikola, E. Hänninen, Bioconjugate Chem. 3, 182 (1992)CrossRefGoogle Scholar
  18. [18]
    I.C. Covaci, P. Ionita, M.T. Caproiu, R. Socoteanu, T. Constantinescu, A.T. Balaban, Cent. Eur. J. Chem. 1, 57 (2003)CrossRefGoogle Scholar
  19. [19]
    C. Legault, A.B. Charette, J. Org. Chem. 68, 7119 (2003)CrossRefGoogle Scholar
  20. [20]
    P. Ionita, M.T. Caproiu, A.T. Balaban, Rev. Roum. Chim. 45, 935 (2000)Google Scholar
  21. [21]
    MOPAC 2007, J.J.P. Stewart, Stewart Computational Chemistry, Colorado Springs, USA, http://openmopac.net Google Scholar
  22. [22]
    J.J.P. Stewart, J. Computational Chemistry 10, 221(1989)CrossRefGoogle Scholar
  23. [23]
    M.A. Thompson, ArgusLab 4.0.1 (Planaria Software LLC, Seattle, WA, 2004) http://www.arguslab.com Google Scholar
  24. [24]
    N.L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977)CrossRefGoogle Scholar
  25. [25]
    M.J. S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)CrossRefGoogle Scholar
  26. [26]
    J. Baker, J. Comp. Chem. 7, 385 (1986)CrossRefGoogle Scholar
  27. [27]
    A.A. Granovsky, Dept. of Chemistry, (Moscow State University (MSU), Russia, 2009) PCGames/Fireflyversion 7.1.G,http://classic.chem.msu.su/gran/gamess/index
  28. [28]
    F. Terrier, Nucleophilic Aromatic Displacement (VCH, New York, 1991)Google Scholar
  29. [29]
    J. Miller, Aromatic Nucleophilic Substitution (Elsevier, Amsterdam, 1968)Google Scholar
  30. [30]
    S.-X. Wang, X.-W. Li, J.-T. Li, Ultrasonics Sonochemistry 15, 33 (2008)CrossRefGoogle Scholar
  31. [31]
    HyperChem(TM) (Hypercube, Inc., Gainesville, Florida, USA, 2008)Google Scholar
  32. [32]
    M. Bem, M. Vasilescu, M.T. Caproiu, A. Beteringhe, T. Constantinescu, M.D. Banciu, A.T. Balaban, Cent. Eur. J. Chem. 2, 237 (2004)CrossRefGoogle Scholar
  33. [33]
    E. Soczewinski, Anal. Chem. 41, 179 (1969)CrossRefGoogle Scholar
  34. [34]
    E. Soczewinski, J. Chromatogr. 388, 91 (1987)CrossRefGoogle Scholar
  35. [35]
    G. Ionita, T. Constantinescu, P. Ionita, J. Planar Chromatogr. Modern TLC 11, 141 (1998)Google Scholar
  36. [36]
    M. Bem, M.T. Caproiu, D. Stoicescu, T. Constantinescu, A.T. Balaban, Cent. Eur. J. Chem. 3, 260 (2003)CrossRefGoogle Scholar
  37. [37]
    C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (Wiley, New York, 1979)Google Scholar
  38. [38]
    M.S. Gordon, M.W. Schmidt, In: C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Eds.), Theory and Applications of Computational Chemistry: the First Forty Years (Elsevier, Amsterdam, 2005) 1167CrossRefGoogle Scholar
  39. [39]
    A.R. Katritzky, V.S. Lobanov, M. Karelson, CODESSA: A Reference Manual (Version 2.0) (Gainesville, Florida, 1994)Google Scholar
  40. [40]
    A.R. Katritzky, S. Perumal, R. Petrukhin, E. Kleinpeter, J. Chem. Inf. Comp. Sci. 41, 56 (2001)Google Scholar
  41. [41]
    L.B. Kier, J. Pharm. Sci. 69, 807 (1980)CrossRefGoogle Scholar
  42. [42]
    D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structure (Wiley-Interscience, New York, 1983)Google Scholar
  43. [43]
    K. Fukui, Theory of Orientation and Stereoselection (Springer-Verlag, Berlin, 1975)Google Scholar
  44. [44]
    W. C. Griffin, J. Soc. Cosmetic Chemists 1, 311 (1949)Google Scholar
  45. [45]
    W.C. Griffin, J. Soc. Cosmetic Chemists 5, 249 (1954)Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Madalina Tudose
    • 1
  • Florin D. Badea
    • 2
  • Miron T. Caproiu
    • 3
  • Adrian Beteringhe
    • 1
  • Maria Maganu
    • 3
  • Petre Ionita
    • 1
    • 4
  • Titus Constantinescu
    • 1
  • Alexandru T. Balaban
    • 5
  1. 1.Institute of Physical ChemistryBucharestRomania
  2. 2.Organic Chemistry DepartmentUniversity Politehnica BucharestBucharestRomania
  3. 3.Center of Organic ChemistryBucharestRomania
  4. 4.Organic Chemistry DepartmentUniversity of BucharestBucharestRomania
  5. 5.Texas A&M University at GalvestonGalvestonUSA

Personalised recommendations