Advertisement

Central European Journal of Chemistry

, Volume 8, Issue 2, pp 409–418 | Cite as

Supercritical fluid extraction as a tool for isolation of monoterpenes from coniferous needles and walnut-tree leaves

  • Jitka Fojtová
  • Lea Lojková
  • Vlastimil Kubáň
Research Article
  • 125 Downloads

Abstract

Several monoterpenes, i.e., (+)-α-pinene, (−)-camphene, sabinene, (−)-β-pinene, myrcene, R-(+)-limonene, (−)-bornylacetate, (−)-trans-caryophyllene and a-humulene were identified and determined by gas chromatography-mass spectrometry (GC-MS) in needles of Pinaceae (Picea abies, P. omorika, P. pungens, P. Breweriana, Pinus nigra, P. mungo turra, P. black, P. sylvestris, Abies pinsapo, A. holophylla, A. Bronmuelleris, A. alba, Larix Kaempferi L. decidua) and tree-leaves of Juglandaceae (Juglans regia, J. nigra, J. sieboldiana var. Cordiformis) families. Supercritical fluid extraction (SFE) was found to be very useful for their isolation at optimised conditions (needles/leaves: pressure 20/30 MPa, temperature 80/130°C, time of extraction 60/60 min, modifier chloroform/chloroform). Their seasonal distribution, evaluation of differences in concentrations and relative amounts in different trees and their varieties grown in different localities were evaluated.

Keywords

Supercritical fluid extraction (SFE) Gas chromatographic-mass spectrometric detection (GC-MS) Terpenes Juglandaceae Pinaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Churáček, Identification and Determination of Toxicologically Important Organic Substances in Materials and Environment. Textbook of Licence Studies — II (VŠCHT, Pardubice, 1992) 15 (In Czech)Google Scholar
  2. [2]
    M.S. Diaz, A.E. Brignole, J. Supercrit. Fluids 47, 611 (2009)CrossRefGoogle Scholar
  3. [3]
    H. Kallio, K. Kerrola, P. Alhonmaki, J. Agric. Food Chem. 42, 2478 (1994)CrossRefGoogle Scholar
  4. [4]
    H. Engelhardt, A. Gross, JHRC-CC — J. High Resol. Chromatogr. & Chromatogr. Commun. 11, 38 (1988)CrossRefGoogle Scholar
  5. [5]
    M. Bounoshita, K. Hibi, H. Nakamura, Anal. Sci. 9, 425 (1993)CrossRefGoogle Scholar
  6. [6]
    J. Sedláková, V. Kubáň, V. Holubová, B. Kocourková, Determination of Essential Oils in Caraway, Book of Abstracts, 2 THETA, 120 (1998)Google Scholar
  7. [7]
    R.M. Muzika, C.L. Campbel, J.W. Hanower, A.L. Smith, J. Chem. Ecol. 16, 2713 (1990)Google Scholar
  8. [8]
    H.J. Bouwmeester, J.A.R. Davies, H. Toxopeus, J. Agric. Food Chem. 43, 3057 (1995)CrossRefGoogle Scholar
  9. [9]
    K.A. Kovar, E. Bock, J. Chromatogr. 262, 285 (1983)CrossRefGoogle Scholar
  10. [10]
    A.A. El Din Seif, M.A. Korany, N.A. Abdel Salam, Anal. Lett. 16, 891 (1983)Google Scholar
  11. [11]
    J.B. Mossa, H.A. El-Obeid, M.M.A. Hassan, Spectrosc. Lett. 13, 49 (1980)CrossRefGoogle Scholar
  12. [12]
    S. Glowacki, Sylwan 1, 27 (1994)Google Scholar
  13. [13]
    A. Orav, T. Kailas, M. Koel, J. Essential Oil Res. 10, 387 (1998)Google Scholar
  14. [14]
    D.A.J. Starmans, H.H. Nijhuis, Trends Food Sci. Technol. 7, 191 (1996)CrossRefGoogle Scholar
  15. [15]
    J.J.C. Scheffer, In: F. Capasso, F.J. Evans (Eds.), Phytotherapy Res. 10(Supplement 1), S6–S7 (1996)Google Scholar
  16. [16]
    A.G. McDonald, T.R. Stuthridge, A.B. Clare, M.J. Robinson, ISWPC 71 (1997)Google Scholar
  17. [17]
    R. Schönwitz, L. Merk, H. Ziegler, Trees 1, 88 (1987)CrossRefGoogle Scholar
  18. [18]
    S.M. Pourmortazavi, S.S. Hajimirsadeghi, J. Chromatogr. A 1163, 2 (2007)CrossRefGoogle Scholar
  19. [19]
    J. Tomko, Farmakognózia 69 (1999)Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2010

Authors and Affiliations

  • Jitka Fojtová
    • 1
  • Lea Lojková
    • 1
  • Vlastimil Kubáň
    • 1
    • 2
  1. 1.Department of Chemistry and BiochemistryMendel University of Agriculture and ForestryBrnoCzech Republic
  2. 2.Department of Food Biochemistry and AnalysisTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations