Advertisement

Discrimination of GalNAc (4S/6S) sulfation sites in chondroitin sulfate disaccharides by chip-based nanoelectrospray multistage mass spectrometry

  • Corina Flangea
  • Alina F. Serb
  • Catalin Schiopu
  • Sorin Tudor
  • Eugen Sisu
  • Daniela G. Seidler
  • Alina D. ZamfirEmail author
Research Article
  • 82 Downloads

Abstract

Sulfation pattern within chondroitin sulfate (CS) glycosaminoglycan (GAG) chains is an important post-translational modification that regulates their interaction with proteins. In this context, development of highly efficient and reproducible analytical methods for the investigation of CS sulfation patterns is of high necessity. In this study we report a novel method for straightforward determination of N-acetylgalactosamine (GalNAc) sulfation sites in chondroitin sulfate disaccharides. Our protocol involves combining fully automated chip-based nanoelectrospray (nanoESI) for analyte infusion and ionization in negative ion mode with multistage (MSn) collision-induced dissociation (CID) high capacity ion trap (HCT) mass spectrometry for generation of sequence ions diagnostic for identification of sulfate ester group position within GalNAc residues. The feasibility of this approach is here demonstrated on chondroitin 6-O-sulfate and chondroitin 4-O-sulfate disaccharides. Fragmentation patterns obtained by MS2 and MS3 sequencing stages provided first mass spectrometric data from which sulfation site(s) within GalNAc monosaccharide ring could be unequivocally deciphered. Hence, the method allowed discriminating 4S/6S sulfation sites solely on the basis of MS and multistage MS evidence.

Keywords

Chondroitin sulfate Sulfation sites Fully automated chip-nanoESI High capacity ion trap mass spectrometry 

References

  1. [1]
    U. Hacker, K. Nybakken, N. Perrimon, Nat. Rev. Mol. Cell Biol. 6, 530 (2005)CrossRefGoogle Scholar
  2. [2]
    I. Capila, R.J. Linhardt, Angew. Chem. Int. Edn. Engl. 41, 391 (2002)CrossRefGoogle Scholar
  3. [3]
    R. Sasisekharan, Z. Shriver, G. Venkataraman, U. Narayanasami, Nat. Rev. Cancer 2, 521 (2002)Google Scholar
  4. [4]
    E.J. Bradbury, L.D. Moon, R.J. Popat, V.R. King, G.S. Bennett, P.N. Patel, J.W. Fawcett, S.B. McMahon, Nature 416, 636 (2002)CrossRefGoogle Scholar
  5. [5]
    C.I. Gama, S.E. Tully, N. Sotogaku, P.M. Clark, M. Rawat, N. Vaidehi, W.A. Goddard III, A. Nishi, L.C. Hsieh-Wilson, Nat. Chem. Biol. 2, 467 (2006)CrossRefGoogle Scholar
  6. [6]
    L.S. Sherman, S.A. Back, Trends Neurosci. 31, 44 (2007)CrossRefGoogle Scholar
  7. [7]
    K. Sugahara, H. Kitagawa, Curr. Opin. Struct. Biol. 10, 518 (2000)CrossRefGoogle Scholar
  8. [8]
    F. Properzi, R.A. Asher, J.W. Fawcett, Biochem. Soc. Trans. 31, 335 (2003)CrossRefGoogle Scholar
  9. [9]
    D. Crespo, R.A. Asher, R. Lin, K.E. Rhodes, J.W. Fawcett, Exp. Neurol. 206, 159 (2007)CrossRefGoogle Scholar
  10. [10]
    Y. Wegrowski, F.X. Maquart, Crit. Rev. Oncol. Hematol. 49, 259 (2004)CrossRefGoogle Scholar
  11. [11]
    H. Desaire, J.A. Leary, J. Am. Soc. Mass Spectrom. 11, 916 (2000)CrossRefGoogle Scholar
  12. [12]
    J. Zaia, J.E. McClellan, C.E. Costello, Anal. Chem. 73, 6030 (2001)CrossRefGoogle Scholar
  13. [13]
    A.M. Hitchcock, C.E. Costello, J. Zaia, Biochemistry. 45, 2350 (2006)CrossRefGoogle Scholar
  14. [14]
    J. Zaia, M.J.C. Miller, J.L. Seymour, C.E. Costello, J. Am. Soc. Mass Spectrom. 18, 952 (2007)CrossRefGoogle Scholar
  15. [15]
    J. Zaia, Mass Spectrom. Rev. 23, 161 (2004)CrossRefGoogle Scholar
  16. [16]
    M. Mormann, A.D. Zamfir, D.G. Seidler, H. Kresse, J. Peter-Katalinic, J. Am. Soc. Mass Spectrom. 18, 179 (2007)CrossRefGoogle Scholar
  17. [17]
    A.D. Zamfir, D.G. Seidler, E. Schönherr, H. Kresse, J. Peter-Katalinic, Electrophoresis 25, 2010 (2004)CrossRefGoogle Scholar
  18. [18]
    A.D. Zamfir, D.G. Seidler, H. Kresse, J. Peter-Katalinić, Glycobiology 13, 733 (2003)CrossRefGoogle Scholar
  19. [19]
    R. Almeida, C. Mosoarca, M. Chirita, V. Udrescu, N. Dinca, Z. Vukelić, M. Allen, A.D. Zamfir, Anal. Biochem. 378, 43 (2008)CrossRefGoogle Scholar
  20. [20]
    B. Domon, C.E. Costello, Glycoconj. J. 5, 397 (1988)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Corina Flangea
    • 1
    • 2
  • Alina F. Serb
    • 1
    • 2
  • Catalin Schiopu
    • 1
  • Sorin Tudor
    • 4
  • Eugen Sisu
    • 2
    • 5
  • Daniela G. Seidler
    • 3
  • Alina D. Zamfir
    • 1
    • 4
    Email author
  1. 1.Mass Spectrometry LaboratoryNational Institute for Research and Development in Electrochemistry and Condensed MatterTimisoaraRomania
  2. 2.“Victor Babes” University of Medicine and PharmacyTimisoaraRomania
  3. 3.Institute for Physiological Chemistry and PathobiochemistryUniversity of MünsterMünsterGermany
  4. 4.Department of Chemical and Biological Sciences“Aurel Vlaicu” University of AradAradRomania
  5. 5.Chemistry Institute of Romanian AcademyTimisoaraRomania

Personalised recommendations