Advertisement

Central European Journal of Chemistry

, Volume 7, Issue 1, pp 47–53 | Cite as

Study by grazing incident diffraction and surface spectroscopy of amalgams from ancient mirrors

  • L. K. Herrera
  • A. Duran
  • M. L. Franquelo
  • A. R. González-Elipe
  • J. P. Espinós
  • J. Rubio-Zuazo
  • G. R. Castro
  • A. Justo
  • J. L. Perez-Rodriguez
Research Article
  • 73 Downloads

Abstract

Characterization of four amalgam surfaces, with different alteration degrees from Andalusia historical mirrors, has been carried out by grazing-incidence X-ray diffraction (GIXRD), and other spectroscopic techniques (SEM/EDX, XPS, and REELS). The combination of all these techniques allows determining the corrosion state of the amalgams. The results show that the amalgams are composed in all cases of a binary alloy of tin and mercury. As mercury has high vapour pressure at RT, it slowly segregates and eventually evaporates, it leaves finely divided particles of tin that easily can be oxidize, forming tin monoxide (SnO) and tin dioxide (SnO2). In one of the samples, most of the amalgam remains unoxidized, since Hg0.1Sn0.9 and metallic Sn phases are the major components; in two other samples, Hg0.1Sn0.9 and Sn phases are not detected while SnO2 and SnO phases appear. Finally, in the last studied sample, only SnO2 phase is detected. The surface analyses of these samples by XPS show that, for most of them an unique chemical species (Sn4+) is found.

Keywords

Tin oxides corrosion process XPS REELS GIXRD Ancient mirrors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Morser, Glass Ind. 42, 244 (1961)Google Scholar
  2. [2]
    P. Hadsund, Stud. Conserv. 38, 3 (1993)CrossRefGoogle Scholar
  3. [3]
    J.M.F. Navarro, El Vidrio, 3rd edition (CSIC publications, Madrid, 2003)Google Scholar
  4. [4]
    H. Römich, in: N.H. Tennent (Ed.), The conservation of glass and ceramics. Research, Practice and Training (James and James Science Publishers, London, 1999)Google Scholar
  5. [5]
    L.K. Herrera, A. Duran, M.L. Franquelo, A. Justo, J.L. Perez-Rodriguez, J. Non-Cryst. Solids (in press)Google Scholar
  6. [6]
    I. De Ryck, E. Van Biezen, K. Leyssens, A. Adriaens, P. Storme, F. Adams, J. Cult. Herit. 5,2, 189 (2004)CrossRefGoogle Scholar
  7. [7]
    L. Robbiola, K. Rahmouni, C. Chiavari, C. Martini, D. Prandstraller, A. Texier, H. Takenouti, P. Vermaut, Appl. Phys. A: Mater. Sci. Process. 92,1, 161 (2008)CrossRefGoogle Scholar
  8. [8]
    L.K. Herrera, A. Duran, M.L. Franquelo, M.C. Jimenez de Haro, A. Justo, J.L. Perez-Rodriguez, J. Cult. Herit., DOI:10.1016/j.culher.2008.06.007Google Scholar
  9. [9]
    R.A. Ramik, R.M. Organ, J. A. Mandarino, Can. Mineral. 41,3, 649 (2003)CrossRefGoogle Scholar
  10. [10]
    S.E. Dunkle, J.R. Craig, J.D. Rimstidt, W.R. Lusardi, Geoarchaeology 19,6, 531 (2004)CrossRefGoogle Scholar
  11. [11]
    H. Strandberg, L.-G. Johansson, O. Lindqvist, Werkst korros. 48,11, 721 (1997)CrossRefGoogle Scholar
  12. [12]
    L. Robbiola, J.-M. Blengino, C. Fiaud, Corros. Sci. 40,12, 2083 (1998)CrossRefGoogle Scholar
  13. [13]
    L.K. Herrera, A. Duran, M.C. Jimenez de Haro, J.L. Perez-Rodriguez, A. Justo, Coalition Electronic Newsletter 14, 10 (2007)Google Scholar
  14. [14]
    J. Rubio-Zuazo, G.R. Castro, Nucl. Inst Meth A. 547, 64 (2005)CrossRefGoogle Scholar
  15. [15]
    J. Rubio-Zuazo, G.R. Castro, Rev. Adv. Mater. Sci. 15, 79 (2007)Google Scholar
  16. [16]
    J. Rubio-Zuazo, PhD thesis, Autonomous University of Madrid (Madrid, Spain, 2005)Google Scholar
  17. [17]
    V.M. Jiménez, J.A. Mejías, J.P. Espinós, A.R. González-Elipe, Surf. Sci. 366, 545 (1996)CrossRefGoogle Scholar
  18. [18]
    H. Dosch, Critical Phenomena at Surfaces and Interfaces (Evanescent X-ray and Neutron Scattering), Springer Tracts in Modern Physics Vol. 126 (Springer, Berlin, 1992)Google Scholar
  19. [19]
    K.W. Evans-Lutterodt, M.T. Tang, J. Appl. Cryst. 28, 318 (1995)CrossRefGoogle Scholar
  20. [20]
    R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989)CrossRefGoogle Scholar
  21. [21]
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2001)Google Scholar
  22. [22]
    D.W. Breiby, O. Bunk, J.W. Andreasen, H.T. Lemke, M.M. Nielsen, J. Appl. Cryst. 41, 262 (2008)CrossRefGoogle Scholar
  23. [23]
    M.F. Toney, S. Brennan, J. Appl. Phys. 65, 4763 (1989)CrossRefGoogle Scholar
  24. [24]
    B.L. Henke, E.M. Gullikson, J.C. Davis, Atomic Data and Nuclear Data Tables 54,2, 181 (1993)CrossRefGoogle Scholar
  25. [25]
    M.C. Corbeil, Stud. Conserv. 43, 265 (1998)CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • L. K. Herrera
    • 1
  • A. Duran
    • 2
  • M. L. Franquelo
    • 1
  • A. R. González-Elipe
    • 1
  • J. P. Espinós
    • 1
  • J. Rubio-Zuazo
    • 3
  • G. R. Castro
    • 3
  • A. Justo
    • 1
  • J. L. Perez-Rodriguez
    • 1
  1. 1.Materials Science Institute of Seville (CSIC-US)SevilleSpain
  2. 2.Centre for Research and Restoration of the Museums of France — CNRSParisFrance
  3. 3.Spanish CRG beamline SpLine at the ESRFGrenobleFrance

Personalised recommendations