Central European Journal of Chemistry

, Volume 6, Issue 1, pp 47–53

Synthesis and pharmacological properties of 3-(2-methyl-furan-3-yl)-4-substituted-Δ2-1,2,4-triazoline-5-thiones

  • Agata Siwek
  • Monika Wujec
  • Maria Dobosz
  • Ewa Jagiełło-Wójtowicz
  • Anna Chodkowska
  • Agnieszka Kleinrok
  • Piotr Paneth
Research Article
  • 85 Downloads

Abstract

By the reaction of 2-methyl-furan-3-carboxylic acid hydrazide with isothiocyanates, 1-[(2-methyl-furan-3-yl)carbonyl]-4-substituted thiosemicarbazides 1 were obtained. Further cyclization with 2% NaOH led to the formation of 3-(2-methyl-furan-3-yl)-4-substituted-Δ2-1,2,4-triazoline-5-thiones 2. The pharmacological effects of 2 on the central nervous system in mice were investigated. Strong antinociceptive properties of the investigated derivatives were observed in a wide range of doses.

Keywords

Δ2-1,2,4-triazoline-5-thione CNS activity DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Modzelewska-Banachiewicz, J. Banachiewicz, A. Chodkowska, E. Jagiełłlo-Wójtowicz, L. Mazur, Eur. J. Med. Chem. 39, 873 (2004)CrossRefGoogle Scholar
  2. [2]
    X-Y. Sun et al., Arch. Pharm. Res. 29, 1080 (2006)CrossRefGoogle Scholar
  3. [3]
    U. Misra, A. Hitkari, A.K. Saxena, S. Gurtu, K. Shanker, Eur. J. Med. Chem. 31, 629 (1996)CrossRefGoogle Scholar
  4. [4]
    S.H.L. Chiu, S.E.W Huskey, Drug Metabol. Dispos. 26, 838 (1998)Google Scholar
  5. [5]
    B. Tozkoparan et al., Arzneimittelforschung 55, 533 (2005)Google Scholar
  6. [6]
    O.A. Al-Deeb et al., Arzneimittelforschung 56, 40 (2006)Google Scholar
  7. [7]
    B.S. Holla et al., Farmaco 56, 565 (2001)CrossRefGoogle Scholar
  8. [8]
    H. Shivarama Holla, B. Sooryanarayana Rao, B.K. Sarojini, P.M. Akberali, N. Suchetha Kumari, Eur. J. Med. Chem. 41, 657 (2006)CrossRefGoogle Scholar
  9. [9]
    G. Turan-Zitouni, Z.A. Kaplancikli, K. Erol, F.S. Kiliç, Il Farmaco 54, 218 (1999)CrossRefGoogle Scholar
  10. [10]
    M. De La Rosa et al., Bioorg. Med. Chem. Lett. 16, 4444 (2006)CrossRefGoogle Scholar
  11. [11]
    A.A. Ikizler, C.B. Johansson, O. Bekircan, C. Çelik, Acta Polon. Pharm.-Drug Research 56, 283 (1999)Google Scholar
  12. [12]
    S. Demirayak, K. Benkli, K. Güven, Eur. J. Med. Chem., 35, 1037 (2000)CrossRefGoogle Scholar
  13. [13]
    X-P. Hui, L-M. Zhang, Z-Y. Zhang, Q. Wang, F. Wang, J. Chin. Chem. Soc., 47, 535 (2000)Google Scholar
  14. [14]
    Ch-H. Chu, X-P. Hui, Y. Zhang, Z-Y. Zhang, Z.-Ch.. Li, R.-A. Liao, J. Chin. Chem. Soc. 48, 121 (2001)Google Scholar
  15. [15]
    M. Wujec, M. Pitucha, M. Dobosz, U. Kosikowska, A. Malm, Acta Pharm. 54, 251 (2004)Google Scholar
  16. [16]
    E.B. Åkerblom, D.E.S. Campbell, Eur. J. Med. Chem. 16, 312 (1973)Google Scholar
  17. [17]
    F.C. Meotti et al., Environ. Toxicol. Pharmacol. 37, 37 (2003)CrossRefGoogle Scholar
  18. [18]
    J. Malmström et al., J. Am. Chem. Soc. 123, 3434 (2001)CrossRefGoogle Scholar
  19. [19]
    J.R. Boissier, J. Tardy, J.C. Diverres, Med. Exp. 3, 81 (1960)Google Scholar
  20. [20]
    C. Aron, P. Simon, C. Larousse, J.R. Boissier, Neuropharmacology 10, 459 (1971)CrossRefGoogle Scholar
  21. [21]
    R.D. Porsolt, A. Bertin, M. Deniel, M. Jalfre, Arch. Int. Pharmacodyn. Thér. 229, 327 (1977)Google Scholar
  22. [22]
    L.B. Witkin, C.F. Heubner, E. O’Keete, P. Spitatalitta, A.J. Plummer, J. Pharmacol. Exp. Ther. 133, 400 (1961)Google Scholar
  23. [23]
    S.J. Corne, R.W. Pickering, B.T. Warner, Br. J. Pharmacol. 20, 106 (1963)Google Scholar
  24. [24]
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  25. [25]
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  26. [26]
    J.P. Perdew et al., Phys. Rev. B 46, 13584 (1992)CrossRefGoogle Scholar
  27. [27]
    P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973)CrossRefGoogle Scholar
  28. [28]
    M.M. Francl et al., J. Chem. Phys. 77, 3654 (1982)CrossRefGoogle Scholar
  29. [29]
    M.J. Frisch et al., Gaussian 03 Revision D.01 Gaussian Inc, Wallingford CT (2004)Google Scholar
  30. [30]
    S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 55, 117 (1981)CrossRefGoogle Scholar
  31. [31]
    C.M. Breneman, K.B. Wiberg, J. Comp. Chem. 11, 361 (1990)CrossRefGoogle Scholar
  32. [32]
    GaussView 3.09, Gaussian Inc., Pittsburg, PA, USA, (2003)Google Scholar
  33. [33]
    HyperChem 8.0.3, HyperCube Inc., Gainsville, FL, USA, (2007)Google Scholar
  34. [34]
    R.A. Kwiecień, A. Lewandowicz, P. Paneth, Chapter 7 In: J. Leszczyński (Ed.), Challenges and Advances in Computational Chemistry and Physics, W.A. Sokalski (Ed.), Vol. 4, Molecular Materials with Specific Interactions — Modeling and Design (Springer, Amsterdam, 2007), 341CrossRefGoogle Scholar
  35. [35]
    V.L. Schramm, Acc. Chem. Res. 36, 588 (2003)CrossRefGoogle Scholar
  36. [36]
    W.A. Carroll et al., Bioorg. Med. Chem. Lett. 17, 4044 (2007)CrossRefGoogle Scholar
  37. [37]
    T. Akbarzadeh, S.A. Tabatabai, M.J. Khoshnoud, B. Shafaghic, A. Shafieea, Bioorg. Med. Chem. Lett. 11, 769 (2003) and references 7, 8 thereinCrossRefGoogle Scholar
  38. [38]
    G. Pastorin et al., J. Med. Chem. 46, 4287 (2003)CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Agata Siwek
    • 1
  • Monika Wujec
    • 1
  • Maria Dobosz
    • 1
  • Ewa Jagiełło-Wójtowicz
    • 2
  • Anna Chodkowska
    • 2
  • Agnieszka Kleinrok
    • 2
  • Piotr Paneth
    • 3
  1. 1.Department of Organic Chemistry, Faculty of PharmacyMedical UniversityLublinPoland
  2. 2.Department of ToxicologyMedical UniversityLublinPoland
  3. 3.Department of Computer ScienceAcademy of Humanities and Economics in LodzLodzPoland

Personalised recommendations