Central European Journal of Chemistry

, Volume 3, Issue 1, pp 82–94

Speciation analysis of inorganic form of arsenic in ground water samples by hydride generation atomic absorption spectrometry with insitu trapping in graphite tube

  • Przemysław Niedzielski
  • Marcin Siepak
Article
  • 61 Downloads

Abstract

This paper presents the results of a study on the optimization of the determination of total arsenic and its species using the absorption atomic spectrometry method combined with hydride generation and in-situ concentration on the inner walls of the graphite tube. To ensure a maximum efficiency of the in-situ analyte concentration on the graphite tube walls, a palladium modifier subjected to preliminary thermal reduction was used. The limits of detection (3σ) were 0.019 ng/mL for total As and 0.031 ng/mL for As(III) at the preliminary analyte concentration for 60s. The optimised procedure of the analyte concentration on the inner walls of the atomiser (graphite tube) was applied for determinations of arsenic in samples of ground water. The content of arsenic in the samples studied varied from 0.21 ng/mL to 0.80 ng/mL for As(III), and from 0.19 ng/mL to 1.24 ng/mL for As(V).

Keywords

Arsenic atomic absorption spectrometry hydride generation in-situ trapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.N. Willie: “First order speciation of As using flow injection hydride generation atomic absorption spectrometry with in-situ trapping of the arsine in a graphite furnace”, Spectrochim. Acta B, Vol. 51, (1996), pp. 1781–1790.CrossRefGoogle Scholar
  2. [2]
    S.J. Hill, T.A. Arowolo, O.T. Butler, S.R.N. Chenery, J.M. Cook, M.S. Cresser and D.L. Miles: “Atomic spectrometry update. Environmental analysis”, J. Anal. At. Spectrom. Vol. 17, (2002), pp. 284–317.CrossRefGoogle Scholar
  3. [3]
    A. Taylor, S. Branch, D. Halls, M. Patriarca and M. White: “Atomic spectrometry update. Clinical and biological materials, foods and beverages”, J. Anal. At. Spectrom. Vol. 17, (2002), pp. 414–455.CrossRefGoogle Scholar
  4. [4]
    H. Matusiewicz and R.E. Sturgeon: “Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace”, Spectrochimica Acta B, Vol. 51, (1996), pp. 377–397.CrossRefGoogle Scholar
  5. [5]
    P. Bermejo-Barrera, J. Moreda-Pineiro, A. Moreda-Pineiro and A. Bermjo-Barrera: “Selective medium reaction for the arsenic(III), arsenic(V) dimethylarsonic acid and monomehylarsonic acid determination in waters by hydride generation on-line electrothermal atomic absorption spectrometry with in situ preconcentration on Zrcoated graphite tubes”, Analytica Chimica Acta, Vol. 374 (1998), pp. 231–240.CrossRefGoogle Scholar
  6. [6]
    J.Y. Cabon and N. Cabon: “Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry Stability of As(III)”, Analytica Chimica Acta, Vol. 418, (2000), pp. 19–31.CrossRefGoogle Scholar
  7. [7]
    H. Matusiewicz and M. Mikołajczak: “Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction electrothermal AAS”, J. Anal. At. Spectrom., Vol. 16, (2001), pp. 652–657.CrossRefGoogle Scholar
  8. [8]
    M. Wałcerz, S. Garboś, E. Bulska and A. Hulanicki: “Continuous flow hydride generation for the preconcentration and determination of arsenic and antimony by GFAAS”, Fresenius J. Anal. Chem., Vol. 350, (1994), pp. 662–666.CrossRefGoogle Scholar
  9. [9]
    E. Denkhaus, A. Golloch, T.U. Kampen, M. Nierfeld and U. Telgherd: “Elactrolytic hydride generation electrothermal atomic absorption spectrometry—in situ trapping of As on diffrent pre-conditioned end-heated graphite tubes”, Fresenius J. Anal. Chem., Vol. 361, (1998), pp. 733–737.CrossRefGoogle Scholar
  10. [10]
    L. Liang, S. Lazoff, C. Chan, M. Horvat and J.S. Woods: “Determination of arsenic in ambient water at sub-part-per-trillion levels by hydride generation Pd coated platform collection and GFAAS detection”, Talanta, Vol. 47, (1998), pp. 569–583.CrossRefGoogle Scholar
  11. [11]
    P. Niedzielski, M. Siepak and J. Siepak: “Comparison of modifiers for determination of arsenic, antimony and selenium by absorption atomic spectrometry with atomization in a graphite tube or hydride generation and in-situ preconcentration in a graphite tube”, Microchem. J., Vol. 72, (2002), pp. 137–145.CrossRefGoogle Scholar
  12. [12]
    B.T. Kildahl and W. Lund: “Determination of arsenic and antimony in wine by electrothermal atomic absorption spectrometry”, Fresenius J. Anal. Chem., Vol. 354, (1996), pp. 93–96.CrossRefGoogle Scholar
  13. [13]
    Z. Ni, Z. Rao and M. Li: “Minimalization of phosphate interference in the direct determination of arsenic in urine by electrothermal atomic absorption spectrometry”, Anal. Chem. Acta, Vol. 334, (1996), pp. 177–182.CrossRefGoogle Scholar
  14. [14]
    H. O. Haug and Y. Liao: “Investigation of the automated determination of As, Sb and Bi by flow-injection hydride generation using in-situ trapping on stable coatings in graphite furnace atomic absorption spectrometry”, Fresenius J. Anal. Chem., Vol. 356, (1996), pp. 435–444.Google Scholar
  15. [15]
    É.C. Lima, R.V. Barbosa, J.L. Brasil, H.D.P. Santos: “Evaluation of different permanent modifiers for the determination of arsenic, cadmium and lead in environmental samples by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., Vol. 17, (2002), pp. 1523–1529.CrossRefGoogle Scholar
  16. [16]
    A.B. Volynsky: “Investigation of the mechanisms of the action of chemical modifiers for electrothermal atomic absorption spectrometry: what for and how?”, Spectrochimica Acta Part B, Vol. 53, (1998), pp. 139–149.CrossRefGoogle Scholar
  17. [17]
    P.R. Walsh, L. Fasching and R.A. Duce: “Matrix Effekts and Their Control during the Flameless Atomic Absorption Determination of Arsenic”, Anal. Chem., Vol. 48, (1976), pp. 1014–1015.CrossRefGoogle Scholar
  18. [18]
    Y. Hirano, K. Yasuda and K. Hirokawa, “Lessening unexpected increases of atomic vapor temperature of arsenic in graphite furnace atomic absorption spectrometry”, Anal Scienc., Vol. 10, (1994), pp. 480–484.Google Scholar
  19. [19]
    J.Y. Cabon and N. Cabon: “Determination of arsenic species in seawater by flow injection hydride generation in situ collection followed by graphite furnace atomic absorption spectrometry Stability of As(III)”, Anal. Chim. Acta., Vol. 418, (2000), pp. 19–31.CrossRefGoogle Scholar
  20. [20]
    H.M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch and B. Welz: Proceedings of 4 th European Furnace Symposium (1999), Kosice, Slovakia, 2000, pp. 11–20.Google Scholar
  21. [21]
    P. Niedzielski, M. Siepak, J. Siepak and J. Przybyłek: “Determination of different forms of arsenic antimony and selenium in water samples using hydride generation”, Pol. J. Environ. Stud., Vol. 11, (2002), pp. 219–224.Google Scholar
  22. [22]
    J. Dedina and D.L. Tsalev: Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester, 1995.Google Scholar
  23. [23]
    J. Stummeyer, B. Harazim and T. Wippermann: “Speciation of arsenic in water samples by high-performance liquid chromatography-hydride generation-atomic absorption spectrometry at trace levels using a post-column reaction system”, Fresenius J. Anal. Chem., Vol. 354, (1996), pp. 344–351.Google Scholar
  24. [24]
    G. Henze, W. Wagner and S. Sander: “Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples”, Fresenius J. Anal. Chem., Vol. 358, (1997), pp. 741–744.CrossRefGoogle Scholar
  25. [25]
    J. Chwastowska, E. Sterlińska, W. Zmijewska and J. Dudek: “Application of a cheleting resin loaded with thionalide to speciation analisis of As(III,V) in natural waters”, Chem. Anal., Vol. 41, (1996), pp. 45–53.Google Scholar
  26. [26]
    D. Chakraborti, W. De Jonghe and F. Adams: “The determination of arsenic by electrothermal atomic absorption spectrometry with a graphite furnace”, Anal. Chim. Acta., Vol. 120, (1980), pp. 121–127.CrossRefGoogle Scholar
  27. [27]
    S. Saverwyns, X. Zhang, F. Vanhaecke, R. Cornelis, L. Moens and R. Dams: “Speciation of Six Arsenic Compounds Using High-performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry With Sample Introduction by Termospray Nebulization”, J. Anal. At. Spectrom., Vol. 12, (1997), pp. 1047–1052.CrossRefGoogle Scholar
  28. [28]
    P. Niedzielski, J. Siepak and M. Siepak: “Total Content of Arsenic, Antimony and Selenium in Groundwater Samples from Western Poland”, Pol. J. Environ. Stud., Vol. 5, (2001), pp. 347–350.Google Scholar
  29. [29]
    P.L. Smedley and W.M. Edmunds: “Redox Patterns and Trace-Element Behvior in the East Midlands Triassic Sandstone Aquifer”, U.K. Ground Water, Vol. 40, (2002), pp. 44–58.CrossRefGoogle Scholar
  30. [30]
    G. Tao and E.H. Hansen: “Determination of Ultra-trace Amounts of Selenium(IV) by Flow Injection Hydride Generation Atomic Absorption Spectrometry With Online Preconcentration by Coprecipitation With Lanthanum Hydroxide”, Analyst, Vol. 119, (1994), pp. 333–337.CrossRefGoogle Scholar
  31. [31]
    L.L. Yang and D.Q. Zhang: “In situ preconcentration and determination of trace arsenic in botanical samples by hydride generation-graphite furnace atomic absorption spectrometry with Pd−Zr as chemical modifier”, Anal. Chim. Acta, Vol. 491, (2003), pp. 91–97.CrossRefGoogle Scholar

Copyright information

© Central European Science Journals 2005

Authors and Affiliations

  • Przemysław Niedzielski
    • 1
  • Marcin Siepak
    • 2
  1. 1.Department of Water and Soil AnalysisAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Hydrogeology and Waters ProtectionAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations