Central European Journal of Mathematics

, Volume 2, Issue 5, pp 754–766 | Cite as

An introduction to finite fibonomial calculus

  • Ewa Krot


This is an indicatory presentation of main definitions and theorems of Fibonomial Calculus which is a special case of ψ-extented Rota's finite operator calculus [7].


Fibonacci numbers Fibonomial Calculus Sheffer F-polynomials 

MSC (2000)

11C08 11B37 47B47 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Bondarienko: Generalized Pascal Triangles and Pyramids- Their Fractals, graphs and Applications, A reproduction by the Fibonacci Association 1993, Santa Clara University, Santa Clara, CA.Google Scholar
  2. [2]
    R.L. Graham, D.E. Knuth and O. Patashnik: Concrete mathematics. A Foundation for Computer Science, Addison-Wesley Publishing Company, Inc., Massachusetts, 1994.zbMATHGoogle Scholar
  3. [3]
    C. Graves: “On the principles which regulate the interchange of symbols in certain symbolic equations”, Proc. Royal Irish Academy, Vol. 6, (1853–1857), pp. 144–152.Google Scholar
  4. [4]
    W.E. Hoggat, Jr: Fibonacci and Lucas numbers. A publication of The Fibonacci Association, University of Santa Clara, CA 95053.Google Scholar
  5. [5]
    D. Jarden: “Nullifying coefficiens”, Scripta Math., Vol. 19, (1953), pp. 239–241.Google Scholar
  6. [6]
    E. Krot: “ψ-extensions of q-Hermite and q-Laguerre Polynomials-properties and principal statements”, Czech. J. Phys., Vol. 51 (12), (2001), pp. 1362–1367.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.K. Kwaśniewski: “Towards ψ-Extension of Rota's Finite Operator Calculus”, Rep. Math. Phys., Vol. 47(305), (2001), pp. 305–342.CrossRefGoogle Scholar
  8. [8]
    G. Markowsky: “Differential operators and the Theory of Binomial Enumeration”, Math. Anal. Appl., Vol. 63 (145), (1978).Google Scholar
  9. [9]
    S. Pincherle and U. Amaldi: Le operazioni distributive e le loro applicazioni all analisi, N. Zanichelli, Bologna, 1901.zbMATHGoogle Scholar
  10. [10]
    G.-C. Rota: Finite Operator Calculus, Academic Press, New York, 1975.zbMATHGoogle Scholar
  11. [11]
    G.C. Rota and R. Mullin: “On the Foundations of cCombinatorial Theory, III: Theory of binominal Enumeration”, In: Graph Theory and its Applications, Academic Press, New York, 1970.Google Scholar
  12. [12] Google Scholar
  13. [13]
    A.K. Kwaśniewski: “Information on Some Recent Applications of Umbral Extensions to Discrete Mathematics”, ArXiv:math.CO/0411145, Vol. 7, (2004), to be presented at ISRAMA Congress, Calcuta-India, December 2004 Google Scholar

Copyright information

© Central European Science Journals 2004

Authors and Affiliations

  • Ewa Krot
    • 1
  1. 1.Institute of Computer ScienceBiałystok UniversityBiałystokPoland

Personalised recommendations