Central European Journal of Physics

, Volume 3, Issue 2, pp 190–208 | Cite as

Some examples of negative feedback in the Earth climate system

  • Olavi Kärner


Temporal variability of daily time series for total solar irradiance at the top of the atmosphere, the Microwave Sounding Unit (MSU) based global, hemispherical and zonal average temperature for the lower troposphere and stratosphere together with 5 surface air temperature data, measured at various meteorological stations have been studied by means of the structure function. From the growth rate of the structure function in the time interval between 32 and 4096 days it follows that the variability of the series represents an anti-persistent (AP) behavior. This property in turn shows a domination of negative feedback in the physical system generating the lower tropospheric temperature variability. Distribution of the increments over various ranges and correlations between them are calculated in order to determine the quantitative characteristics describing temporal variability.


Fluctuations random processes noise and Bm 

PACS (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.E. Parker, T.P. Legg and C.K. Folland: “A new daily Central England Temperature Series, 1772–1991’, Int. J. Climatol., Vol. 12, (1992), pp. 317–342.Google Scholar
  2. [2]
    B.B. Mandelbrot:The fractal geometry of nature, W. H. Freeman, New York, 1982.zbMATHGoogle Scholar
  3. [3]
    R.A. Bryson: “The paradigm of climatology: An essay”.Bull. Amer. Meteorol. Soc. Vol. 78, (1997), pp. 449–455.CrossRefADSGoogle Scholar
  4. [4]
    A. Davis, A. Marshak, W. Wiscombe and R. Cahalan: “Multifractal characterizations of intermittency in nonstationary geophysical signals and fields”, In: G. Trevino et al (Eds.):Current Topics in Nonstationary Analysis, World-Scientific. Singapore, 1996, pp. 97–158.Google Scholar
  5. [5]
    A.S. Monin and A.M. Yaglom:Statistical Fluid Mechanics, Vol. 2, MIT Press, Boston Massachusetts, 1975.Google Scholar
  6. [6]
    J. Beran:Statistics for long-memory processes, Chapman & Hall, New York, 1994.zbMATHGoogle Scholar
  7. [7]
    M.S. Taqqu, V. Teverovsky and W. Willinger: “Estimation for long-range dependence: An empirical study”, Fractals, Vol. 3, (1995) pp. 785–798.zbMATHGoogle Scholar
  8. [8]
    S. Lovejoy and D. Schertzer: “Scale invariance in climatological temperatures and the local spectral plateau”, Ann. Geophys., Vol. 4B, (1986), pp. 401–410.Google Scholar
  9. [9]
    F. Schmitt, S. Lovejoy and D. Schertzer: “Multifractal analysis of the Greenland ice-core project climate data”, Geophys. Res. Lett., Vol. 22, (1995), pp. 1689–1692.CrossRefADSGoogle Scholar
  10. [10]
    O. Kärner: “On total solar irradiance variability”, In: A. Wilson (Ed):Proceedings of the SOHO 11 Symposium on ‘From Solar Min to Max: Half a Solar Cycle with SOHO’ WRC/PMOD, Davos, Switzerland (ESA SP-508, June 2002), pp. 215–218.Google Scholar
  11. [11]
    O. Kärner: “On nonstationarity and antipersistency in global temperature series”, J. Geophys. Res., Vol. D107, (2002), doi:10.1029/2001JD002024.Google Scholar
  12. [12]
    A.S. Monin:An Introduction to the Theory of Climate, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1986.Google Scholar
  13. [13]
    D.L. Hartmann:Global Physical Climatology, Academic Press, San Diego, 1994.Google Scholar
  14. [14]
    J. Hansen, A. Lacis, R. Ruedy, M. Sato and H. Wilson: “How sensitive is the World’s Climate?”, Natl. Geog. Res. Exploration, Vol. 9, (1993), pp. 142–158.Google Scholar
  15. [15]
    M. Palus and D. Novotna: “Testing for non-linearity in weather records”, Phys. Lett. A, Vol. 193, (1994), pp. 67–74.CrossRefADSGoogle Scholar
  16. [16]
    G. Plaut, M. Ghil and R. Vautard: “Interannual and interdecadal variability in 335 years of Central England temperature”, Science, Vol. 268, (1995), pp. 710–713.ADSGoogle Scholar
  17. [17]
    J.D. Pelletier and D.L. Turcotte: “Self-affine sime series: II Applications and models”, Advances in Geophysics, Vol. 40, (1999), pp. 91–166.Google Scholar
  18. [18]
    D.I. Harwey and T.C. Mills: “Modeling trends in Central England temperatures”, J. of Forecasting, Vol. 22, (2003), pp. 35–47.CrossRefGoogle Scholar
  19. [19]
    R. McKitrick and P.J. Michaels: “A test of corrections for extraneous signals in gridded surface temperature data”, Climate Research, Vol. 26, (2004), pp. 159–173.Google Scholar
  20. [20]
    C. Fröhlich and J. Lean: “Total Solar Irradiance Variations”, In: F.L. Deubner et al. (Eds.), New Eyes to see inside the Sun and Stars, Proceedings IAU Symposium 185, Kyoto, August 1997. Kluwer Academic Publ., Dordrecht, The Netherlands, 1998, pp. 89–102.Google Scholar
  21. [21]
    R.W. Spencer, J.R. Christy and N.C. Grody: “Global Atmospheric Temperature Monitoring with Satellite Microwave Measurements Method and Results 1979–84”, J. Climate, Vol. 3, (1990), pp. 1111–1128.CrossRefADSGoogle Scholar
  22. [22]
    J.R. Christy, R.W. Spencer and W.D. Braswell: “MSU tropospheric temperatures: Dataset construction and radiosonde comparisons”, J. Atmos. Oceanic Tech., Vol. 17, (2000), pp. 1153–1170.CrossRefGoogle Scholar
  23. [23]
    W. Feller:Introduction to Probability Theory and Applications, Vol. 1, 3rd Ed., Wiley, New York, 1988.Google Scholar
  24. [24]
    R.F. Voss: “Fractals in nature: from characterization to simulation”, In: H.O. Peitgen and D. Saupe (Eds):The Science of Fractal Images, Springer, New York, (1988). pp. 21–70.Google Scholar
  25. [25]
    W.H. Press, S.A. Teukolsky, V.T. Vetterling and B.P. Flannery:Numerical Recipes in FORTRAN, 2nd Ed., Cambridge University Press, New York, 1993.zbMATHGoogle Scholar
  26. [26]
    IPCC:Climate Change 1995: The Science of Climate Change. Contribution of WG I to the Second Assessment Report of the IPCC. J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (Eds.), Cambridge University Press, 1996.Google Scholar
  27. [27]
    J.V. Bradley:Distribution-Free Statistical Tests, Prentice Hall, Englewood Cliffs, NJ, 1968.zbMATHGoogle Scholar
  28. [28]
    D.H. Douglass, E.G. Blackman and R.S. Knox: “Temperature response of Earth to the annual solar irradiance cycle”, Phys. Lett. A, Vol. 323, (2004), pp. 315–322.CrossRefADSGoogle Scholar

Copyright information

© Central European Science Journals 2005

Authors and Affiliations

  • Olavi Kärner
    • 1
  1. 1.Tartu ObservatoryTõravereEstonia

Personalised recommendations