Skip to main content

The Bootstrap Method for Assessing Statistical Accuracy

A Correction to this article was published on 01 January 2021

This article has been updated

Abstract

This is an invited review of bootstrap methods. It begins with an exposition of the bootstrap estimate of standard error for one-sample situations. Several examples, some involving quite complicated statistical procedures, are given. The bootstrap is then extended to other measures of statistical accuracy, like bias and prediction error, and to complicated data structures such as time series, censored data, and regression models. Several more examples are presented illustrating these ideas. The last third of the paper deals mainly with bootstrap confidence intervals. The paper ends with a FORTRAN program for bootstrap standard errors.

Change history

References

  • Anderson, O.D. (1976). Time Series Anlysis and Forecasting. Beran. R. (1984). Bootstrap methods in statistics. Jber. d. Dt. Math. Verein 86, 14–30.

    Google Scholar 

  • Bickel, P.J. and Freedman, D.A. (1981). Some asymptotic theory for the bootstrap. Annals Stat. 9, 1196–1217.

    MathSciNet  Article  Google Scholar 

  • Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. JRSS B, 26, 211–252.

    MATH  Google Scholar 

  • Breiman, L. and Friedman, J.H. (1984). Estimating optimal correlations for multiple regression and correlation. To appear. J. Amer. Stat Assoc., March 1985.

    Google Scholar 

  • Cox, D.R. (1972). Regression models and life tables. JRSS B, 34, 187–202.

    MathSciNet  MATH  Google Scholar 

  • Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press, New Jersey.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals Stat. 7, 1–26.

    MathSciNet  Article  Google Scholar 

  • Efron, B. (1979B). Computers and the theory of statistics: thinking the unthinkable. SIAM Review 21, 460–480.

    MathSciNet  Article  Google Scholar 

  • Efron, B. (1981A). Censored data and the bootstrap. J. Amer. Stat. Assoc. 76, 312–319.

    MathSciNet  Article  Google Scholar 

  • Efron, B. (1981B). Maximum likelihood and decision theory. Annals Stat 10, 340–356.

    MathSciNet  Article  Google Scholar 

  • Efron, B. (1981C). Nonparametric estimates of standard error: the jackknife, the bootstrap, and other resampling methods. Biometrika 68, 589–599.

    MathSciNet  Article  Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans. SIAM CBMS-NSF Monograph 38.

  • Efron, B. (1982A). Transformation theory: how normal is a one parameter family of distributions? Annals Stat, 10, 323–339.

    Article  Google Scholar 

  • Efron, B. (1983). Estimating the error rate of a prediction rule: mprovements in cross-validation. J. Amer. Stat. Assoc. 78, 316–331.

    Article  Google Scholar 

  • Efron, B. (1984A). Bootstrap confidence intervals for a class of parametric problems. To appear Biometrika.

    Book  Google Scholar 

  • Efron, B. (1984B). Better bootstrap confidence intervals. Department of Statistics, Stanford University Technical Report No. 226.

    Book  Google Scholar 

  • Efron, B. and Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross validation. The American Statistician 37, 36–48.

    MathSciNet  Google Scholar 

  • Efron, B. and Stein, C. (1981). The jackknife estimate of variance. Annals Stat. 9, 586–596.

    MathSciNet  Article  Google Scholar 

  • Fieller, E.C. (1954). Some problems in interval estimation. JRSS B, 16, 175–183.

    MathSciNet  MATH  Google Scholar 

  • Friedman, J.H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Stat. Assoc. 76, 817–823.

    MathSciNet  Article  Google Scholar 

  • Friedman, J.H. and Tibshirani, R.J. (1984). The monotone smoothing of scatterplots. Technometrics 26, 3, 243–250.

    Article  Google Scholar 

  • Hampel, F.R. (1974). The influence curve and its role in robust estimation. J. Amer. Stat. Assoc. 69, 383–393.

    MathSciNet  Article  Google Scholar 

  • Hastie, T.J. and Tibshirani, RJ. (1984). Discussion of Peter Huberts “Projection Pursuit”. To appear Annals Stat, August 1985.

    Google Scholar 

  • Hinkley, D.V. (1978). Improving the jackknife with special reference to correlation estimation. Biometrika 65, 13–22.

    Article  Google Scholar 

  • Jaeckel, L. (1972). The infinitesimal jackknife. Memorandum MM 72-1215-11, Bell Laboratories, Murray Hill, New Jersey.

    Google Scholar 

  • Johnson, N. and Kotz, S. (1970). Continuous Univariate Distributions, vol. 2. Houghton Mifflin, Boston.

  • Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete samples. J. Amer. Stat Assoc. 53, 457–481.

    Article  Google Scholar 

  • Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals Math. Stat 27, 887–906.

    MathSciNet  Article  Google Scholar 

  • Mallows, C. (1974). On some topics in robustness. Memorandum, Bell Laboratories, Murray Hill, New Jersey.

    Google Scholar 

  • Miller, R.G. (1974). The jackknife — a review. Biometrika 61, 1–17.

    MathSciNet  MATH  Google Scholar 

  • Miller, R.G. and Halpern J. (1982). Regression with censored data. Biometrika 69, 521–531.

    MathSciNet  Article  Google Scholar 

  • Rao, C.R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.

    Book  Google Scholar 

  • Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Annals Stat. 9, 1187–1195.

    MathSciNet  Article  Google Scholar 

  • Therneau, T. (1983). Variance Reduction Techniques for the Bootstrap. Ph. D. Thesis. Stanford University, Department of Statistics.

    Google Scholar 

  • Tibshirani, R.J. and Hastie, T.J. (1984). Local likelihood estimation. Department of Statistics, Stanford University Technical Report No. 97.

    Book  Google Scholar 

  • Tukey, J. (1958). Bias and confidence in not quite large samples, abstract. Annals Math. Statist. 29, p. 614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original online version of this article was revised due to the retrospective open access order.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Efron, B., Tibshirani, R. The Bootstrap Method for Assessing Statistical Accuracy. Behaviormetrika 12, 1–35 (1985). https://doi.org/10.2333/bhmk.12.17_1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2333/bhmk.12.17_1

Key Words and Phrases

  • Bootstrap method
  • estimated standard errors
  • approximate confidence intervals
  • nonparametric methods