, Volume 31, Issue 1, pp 1–12 | Cite as

Oblique Promax Rotation Applied to the Solutions in Multiple Correspondence Analysis

  • Kohei AdachiEmail author


There are many approaches to formulate multiple correspondence analysis of multi-item categorical data. A lower-rank approximation approach gives the freedom for the oblique rotation of axes. In the current paper, we apply the oblique rotation of axes to a variable-by-dimension matrix to arrive at simple structure. This matrix is defined in either of two different manners, that is, by treating categories as variables or, alternatively, by treating items as variables. For each of these two options, the standardized inner products between dimensions and variables are used as the elements of the component structure matrix. We adopt a promax method for the oblique rotation. In this method, scores are rotated in such a way that the above matrix is matched with the target matrix obtained from the result of the varimax rotation.

Key Words and Phrases

Multiple correspondence analysis oblique rotation promax method categor-ical data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baseball Magazine Sha (2001). Besuboru rekodo buku 2002 (Baseball record book 2002). Tokyo: Baseball Magazine Sha (in Japanese).Google Scholar
  2. Benzecri J.-P. (1973). L’analyse des donn’ees: Tome 1, la taxinomie; Tome 2, l’analyse des cor-respondances. Paris: Dunod.zbMATHGoogle Scholar
  3. Benzecri J.-P. (1992). Correspondence analysis handbook. New York: Marcel Dekker.CrossRefGoogle Scholar
  4. Gifi A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.zbMATHGoogle Scholar
  5. Gower J.C., & Hand D.J. (1996). Biplots. London: Chapman & Hall.zbMATHGoogle Scholar
  6. Greenacre M.J. (1984). Theory and applications of correspondence analysis. London: Academic Press.zbMATHGoogle Scholar
  7. Greenacre M.J. (1988). Correspondence analysis of multivariate categorical data. Biometrika, 75, 457–467.MathSciNetCrossRefGoogle Scholar
  8. Harman H.H. (1976). Modern factor analysis (3rd edition). Chicago: The University of Chicago Press.zbMATHGoogle Scholar
  9. Hayashi C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 3, 69–98.CrossRefGoogle Scholar
  10. Heiser W.J., & Meulman J.J. (1995). Nonlinear methods for the analysis of homogeneity and heterogeneity. In W.J. Krzanowski (Ed.), Recent advances in descriptive multivariate analysis, pp.51–89. Oxford: Oxford University Press.Google Scholar
  11. Hendrickson A.E., & White P.O. (1964). PROMAX: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17, 65–70.CrossRefGoogle Scholar
  12. Ibaraki T., & Fukushima M. (1991). FORTRAN 77 saitekika puroguramingu (FORTRAN 77 optimization programming). Tokyo: Iwanami Shoten (in Japanese with Fortran).Google Scholar
  13. Jennrich R.L., & Sampson P.F. (1966). Rotation for simple loadings. Psychometrika, 31, 313–323.MathSciNetCrossRefGoogle Scholar
  14. Jolliffe I.T. (2002). Principal component analysis (2nd Edition). New York: Springer.zbMATHGoogle Scholar
  15. Kaiser H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.CrossRefGoogle Scholar
  16. Kiers H.A.L. (1991). Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. Psychometrika, 56, 197–212.MathSciNetCrossRefGoogle Scholar
  17. Kiers H.A.L. (1993). A comparison of techniques for finding components with simple structure. In C.M. Cuadras & C.R. Rao, Multivariate analysis: Future directions 2, pp.67–86. Amsterdam: Elsevier Science Publishers.Google Scholar
  18. Lebart L. (1975). L’orientation du d’epouillement de certaines enquêetes par l’analyse des correspondances multiples. Consommation, 2, 73–96.Google Scholar
  19. Lebart L., Morineau A., & Warwick K.M. (1984). Multivariate descriptive statistical analysis: Correspondence analysis and related techniques for large matrices. New York: Wiley.zbMATHGoogle Scholar
  20. Meulman J.J., Heiser W.J., & SPSS Inc. (1999). SPSS categories 10.0. Chicago: SPSS Inc.Google Scholar
  21. Murakami, T (1999). Kategorikaru deta no shuseibun bunseki no shinri keiryou gaku teki kenkyu, Heisei 9–10 nendo kagaku kenkyuhi hojokin kenkyuseika houkokusho (Psychometric studies on principal component analysis of categorical data, The report of the researches in 1998–1999 supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture) (in Japanese).Google Scholar
  22. Murakami, T (2001). Shinri sokuteika no tachiba kara mita shitsuteki deta no suryouka (Quantification of qualitative data viewed from the standpoint of a psychometrician). In The proceeding of the 29th annual meeting of the Behaviormetric Society of Japan, pp.24–27. (in Japanese).Google Scholar
  23. Nishisato S. (1980), Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.Google Scholar
  24. Ogasawara H. (1997). Sousenkei moderu ni okeru inshi kaiten (Factor rotation in bilinear models). Otaru-syouka-diagaku, Shougaku Toukyu (Economic Review, Otrau University of Commerce), 47, 181–206 (in Japanese).Google Scholar
  25. Taniguchi R. (1999). Application of the varimax rotation to Hayashi’s second method of quantification. Bulletin of the Computational Statistics of Japan, 12, 35–44 (in Japanese with English summary).Google Scholar
  26. ten Berge J.M.F. (1993). Least squares optimization in multivariate analysis. Leiden: DSWO Press.Google Scholar
  27. ten Berge J.M.F., & Kiers H.A.L. (1996). Optimality criteria for principal component analysis and generalizations. British Journal of Mathematical and Statistical Psychology, 49, 335–345.MathSciNetCrossRefGoogle Scholar
  28. ten Berge J.M.F., Knol D.L., & Kiers H.A.L. (1988). A treatment of the orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to varimax rotation. Computational Statistics Quarterly, 3, 207–217.zbMATHGoogle Scholar
  29. Tenenhaus M., & Young F.W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 91–119.MathSciNetCrossRefGoogle Scholar
  30. Torgerson W.S., (1958). Theory and methods of scaling. New York: Wiley.Google Scholar
  31. Toyoda H. (2000). Kyoubunsan kouzou bunseki, ouyouhen—Kouzou houteishiki moderingu (Co-variance structure analysis, applications: Structural equation modeling). Tokyo: Asakura Shoten (in Japanese).Google Scholar
  32. van de Velden M., & Kiers H.A.L. (2003). An application of rotation in correspondence analysis. In H. Yanai A. Okada K. Shigemasu Y. Kano & J.J. Meulman (Eds.), Recent developments in psychometrics, pp.471–478. Tokyo: Springer.CrossRefGoogle Scholar
  33. van Rijckevorsel J.L.A., & de Leeuw J. (1988). Component and correspondence analysis: Dimension reduction by functional approximation. New York: Wiley.Google Scholar
  34. Yanai H. (1994). Tahenryou deta kaisekihou—Riron to ouyou (Multivariate data analysis: The-ory and applications). Tokyo: Asakura Shoten (in Japanese).Google Scholar
  35. Yanai H., Shigemasu K., Mayekawa S., & Ichikawa M. (1990). Inshi bunseki—Sono riron to houhou (Factor analysis: Theory and methods). Tokyo: Asakura Shoten (in Japanese).Google Scholar

Copyright information

© The Behaviormetric Society 2004

Authors and Affiliations

  1. 1.Department of psychologyRitsumeikan UniversityKyotoJapan

Personalised recommendations